Related Articles

# Python | sympy.integrate() using limits

• Last Updated : 12 Jun, 2019

With the help of `sympy.integrate(expression, limit)` method, we can find the integration of mathematical expressions using limits in the form of variables by using `sympy.integrate(expression, limit)` method.

Syntax : `sympy.integrate(expression, reference variable, limit)`
Return : Return integration of mathematical expression.

Example #1 :

In this example we can see that by using `sympy.integrate(expression, limits)` method, we can find the integration of mathematical expression using limits with variables. Here we use `symbols()` method also to declare a variable as symbol.

 `# import sympy``from` `sympy ``import` `*` ` ` `x, y ``=` `symbols(``'x y'``)``gfg_exp ``=` `cos(x)`` ` `print``(``"Before Integration : {}"``.``format``(gfg_exp))`` ` `# Use sympy.integrate() method``intr ``=` `integrate(gfg_exp,  (x, ``-``oo, oo))`` ` `print``(``"After Integration : {}"``.``format``(intr))`

Output :

Before Integration : cos(x)

After Integration : AccumBounds(-2, 2)

Example #2 :

 `# import sympy``from` `sympy ``import` `*` ` ` `x, y ``=` `symbols(``'x y'``)``gfg_exp ``=` `tan(x)`` ` `print``(``"Before Integration : {}"``.``format``(gfg_exp))`` ` `# Use sympy.integrate() method``intr ``=` `integrate(gfg_exp,  (x, ``-``1``, ``1``))`` ` `print``(``"After Integration : {}"``.``format``(intr))`

Output :

Before Integration : tan(x)

After Integration : 0

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up