Open In App

Python – Power Log-Normal Distribution in Statistics

Improve
Improve
Like Article
Like
Save
Share
Report

scipy.stats.powerlognorm() is a power log-normal continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution.

Parameters :

q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : power log-normal continuous random variable

Code #1 : Creating power log-normal continuous random variable




# importing library
  
from scipy.stats import powerlognorm 
    
numargs = powerlognorm .numargs 
a, b = 4.32, 3.18
rv = powerlognorm (a, b) 
    
print ("RV : \n", rv) 


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D8295B48

Code #2 : power log-normal continuous variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = powerlognorm.rvs(a, b) 
print ("Random Variates : \n", R) 
  
# PDF 
R = powerlognorm.pdf(a, b, quantile) 
print ("\nProbability Distribution : \n", R) 


Output :

Random Variates : 
 0.03729334807608579

Probability Distribution : 
 [0.00000000e+000 8.14360522e-126 7.81567440e-037 1.63561014e-018
 8.34970138e-012 1.30638655e-008 7.72704791e-007 9.42026992e-006
 4.87663742e-005 1.52259891e-004]
 

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.pdf(distribution)) 


Output :

Distribution : 
 [0.         0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
 0.48979592 0.53061224 0.57142857 0.6122449  0.65306122 0.69387755
 0.73469388 0.7755102  0.81632653 0.85714286 0.89795918 0.93877551
 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
 1.2244898  1.26530612 1.30612245 1.34693878 1.3877551  1.42857143
 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
 1.95918367 2.        ]
 

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
     
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = powerlognorm .pdf(x, 1, 3, 5
y2 = powerlognorm .pdf(x, 1, 4, 4
plt.plot(x, y1, "*", x, y2, "r--"


Output :



Last Updated : 10 Jan, 2020
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads