Open In App
Related Articles

Python – Laplace Distribution in Statistics

Improve Article
Improve
Save Article
Save
Like Article
Like

scipy.stats.laplace() is a Laplace continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution.

Parameters :

q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : laplace continuous random variable

Code #1 : Creating laplace continuous random variable




# importing library
  
from scipy.stats import laplace  
    
numargs = laplace.numargs 
a, b = 4.32, 3.18
rv = laplace(a, b) 
    
print ("RV : \n", rv)  


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D4DAF708


Code #2 : laplace continuous variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = laplace.rvs(a, b) 
print ("Random Variates : \n", R) 
  
# PDF 
R = laplace.pdf(a, b, quantile) 
print ("\nProbability Distribution : \n", R) 


Output :

Random Variates : 
 10.613266250400734

Probability Distribution : 
 [1.54667501e-48 1.43452207e-04 1.04508615e-02 4.07873394e-02
 7.56198196e-02 1.04863398e-01 1.26475923e-01 1.41381881e-01
 1.51096956e-01 1.56988338e-01]

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.pdf(distribution)) 


Output :

Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]
 

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
     
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = laplace .pdf(x, 1, 3
y2 = laplace .pdf(x, 1, 4
plt.plot(x, y1, "*", x, y2, "r--"


Output :


Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out - check it out now!

Last Updated : 10 Jan, 2020
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials