Program for credit card number validation

Write a program that prompts the user to enter a credit card number as a long integer and Display whether that card is valid or invalid.
Credit card numbers follow certain patterns.
A credit card number must have between 13 and 16 digits. It must start with:

• 4 for Visa cards
• 5 for Master cards
• 37 for American Express cards
• 6 for Discover cards

The problem can be solved by using Luhn algorithm

Luhn check or the Mod 10 check, which can be described as follows (for illustration, consider the card number 4388576018402626):

• Step 1. Double every second digit from right to left. If doubling of a digit results in a
two-digit number, add up the two digits to get a single-digit number (like for 12:1+2, 18=1+8).
• Step 2. Now add all single-digit numbers from Step 1.
4 + 4 + 8 + 2 + 3 + 1 + 7 + 8 = 37
• Step 3. Add all digits in the odd places from right to left in the card number.
6 + 6 + 0 + 8 + 0 + 7 + 8 + 3 = 38
• Step 4. Sum the results from Step 2 and Step 3. 37 + 38 = 75
• Step 5. If the result from Step 4 is divisible by 10, the card number is valid; otherwise, it is invalid.

Examples :

```Input : 379354508162306
Output : 379354508162306 is Valid

Input : 4388576018402626
Output : 4388576018402626 is invalid```

Implementation:

C++

 `// C++ program to check if a given credit``// card is valid or not.``#include ``using` `namespace` `std;` `// Return this number if it is a single digit, otherwise,``// return the sum of the two digits``int` `getDigit(``int` `number)``{``  ``if` `(number < 9)``    ``return` `number;``  ``return` `number / 10 + number % 10;``}` `// Return the number of digits in d``int` `getSize(``long` `d)``{``  ``string num = to_string(d);``  ``return` `num.length();``}` `// Return the first k number of digits from``// number. If the number of digits in number``// is less than k, return number.``long` `getPrefix(``long` `number, ``int` `k)``{``  ``if` `(getSize(number) > k)``  ``{``    ``string num = to_string(number);``    ``return` `stol(num.substr(0, k));``  ``}``  ``return` `number;``}` `// Return true if the digit d is a prefix for number``bool` `prefixMatched(``long` `number, ``int` `d)``{``  ``return` `getPrefix(number, getSize(d)) == d;``}` `// Get the result from Step 2``int` `sumOfDoubleEvenPlace(``long` `int` `number)``{``  ``int` `sum = 0;``  ``string num = to_string(number) ;``  ``for` `(``int` `i = getSize(number) - 2; i >= 0; i -= 2)``    ``sum += getDigit(``int``(num[i] - ``'0'``) * 2);` `  ``return` `sum;``}` `// Return sum of odd-place digits in number``int` `sumOfOddPlace(``long` `number)``{``  ``int` `sum = 0;``  ``string num = to_string(number) ;``  ``for` `(``int` `i = getSize(number) - 1; i >= 0; i -= 2)``    ``sum += num[i] - ``'0'``;``  ``return` `sum;``}` `// Return true if the card number is valid``bool` `isValid(``long` `int` `number)``{``  ``return` `(getSize(number) >= 13 &&``          ``getSize(number) <= 16) &&``    ``(prefixMatched(number, 4) ||``     ``prefixMatched(number, 5) ||``     ``prefixMatched(number, 37) ||``     ``prefixMatched(number, 6)) &&``    ``((sumOfDoubleEvenPlace(number) +``      ``sumOfOddPlace(number)) % 10 == 0);``}` `// Driver Code``int` `main()``{``  ``long` `int` `number = 5196081888500645L;``  ``cout << number << ``" is "` `<<  (isValid(number) ? ``"valid"` `: ``"invalid"``);``  ``return` `0;``}` `// This code is contributed by yuvraj_chandra`

Java

 `// Java program to check if a given credit``// card is valid or not.``import` `java.util.Scanner;` `public` `class` `CreditCard {``    ``// Main Method``    ``public` `static` `void` `main(String[] args)``    ``{``        ``long` `number = 5196081888500645L;` `        ``System.out.println(number + ``" is "` `+ ``        ``(isValid(number) ? ``"valid"` `: ``"invalid"``));``    ``}` `    ``// Return true if the card number is valid``    ``public` `static` `boolean` `isValid(``long` `number)``    ``{``       ``return` `(getSize(number) >= ``13` `&& ``               ``getSize(number) <= ``16``) && ``               ``(prefixMatched(number, ``4``) || ``                ``prefixMatched(number, ``5``) || ``                ``prefixMatched(number, ``37``) || ``                ``prefixMatched(number, ``6``)) && ``              ``((sumOfDoubleEvenPlace(number) + ``                ``sumOfOddPlace(number)) % ``10` `== ``0``);``    ``}` `    ``// Get the result from Step 2``    ``public` `static` `int` `sumOfDoubleEvenPlace(``long` `number)``    ``{``        ``int` `sum = ``0``;``        ``String num = number + ``""``;``        ``for` `(``int` `i = getSize(number) - ``2``; i >= ``0``; i -= ``2``) ``            ``sum += getDigit(Integer.parseInt(num.charAt(i) + ``""``) * ``2``);``        ` `        ``return` `sum;``    ``}` `    ``// Return this number if it is a single digit, otherwise,``    ``// return the sum of the two digits``    ``public` `static` `int` `getDigit(``int` `number)``    ``{``        ``if` `(number < ``9``)``            ``return` `number;``        ``return` `number / ``10` `+ number % ``10``;``    ``}` `    ``// Return sum of odd-place digits in number``    ``public` `static` `int` `sumOfOddPlace(``long` `number)``    ``{``        ``int` `sum = ``0``;``        ``String num = number + ``""``;``        ``for` `(``int` `i = getSize(number) - ``1``; i >= ``0``; i -= ``2``) ``            ``sum += Integer.parseInt(num.charAt(i) + ``""``);        ``        ``return` `sum;``    ``}` `    ``// Return true if the digit d is a prefix for number``    ``public` `static` `boolean` `prefixMatched(``long` `number, ``int` `d)``    ``{``        ``return` `getPrefix(number, getSize(d)) == d;``    ``}` `    ``// Return the number of digits in d``    ``public` `static` `int` `getSize(``long` `d)``    ``{``        ``String num = d + ``""``;``        ``return` `num.length();``    ``}` `    ``// Return the first k number of digits from ``    ``// number. If the number of digits in number``    ``// is less than k, return number.``    ``public` `static` `long` `getPrefix(``long` `number, ``int` `k)``    ``{``        ``if` `(getSize(number) > k) {``            ``String num = number + ``""``;``            ``return` `Long.parseLong(num.substring(``0``, k));``        ``}``        ``return` `number;``    ``}``}`

Python3

 `class` `CreditCard:``    ``# Main Method``    ``@staticmethod``    ``def` `main(args):``        ``number ``=` `5196081888500645``        ``print``(``str``(number) ``+` `" is "` `+``              ``(``"valid"` `if` `CreditCard.isValid(number) ``else` `"invalid"``))``        ` `    ``# Return true if the card number is valid``    ``@staticmethod``    ``def` `isValid(number):``        ``return` `(CreditCard.getSize(number) >``=` `13` `and` `CreditCard.getSize(number) <``=` `16``) ``and` `(CreditCard.prefixMatched(number, ``4``) ``or` `CreditCard.prefixMatched(number, ``5``) ``or` `CreditCard.prefixMatched(number, ``37``) ``or` `CreditCard.prefixMatched(number, ``6``)) ``and` `((CreditCard.sumOfDoubleEvenPlace(number) ``+` `CreditCard.sumOfOddPlace(number)) ``%` `10` `=``=` `0``)``    ` `    ``# Get the result from Step 2``    ``@staticmethod``    ``def` `sumOfDoubleEvenPlace(number):``        ``sum` `=` `0``        ``num ``=` `str``(number) ``+` `""``        ``i ``=` `CreditCard.getSize(number) ``-` `2``        ``while` `(i >``=` `0``):``            ``sum` `+``=` `CreditCard.getDigit(``int``(``str``(num[i]) ``+` `"") ``*` `2``)``            ``i ``-``=` `2``        ``return` `sum``      ` `    ``# Return this number if it is a single digit, otherwise,``    ``# return the sum of the two digits``    ``@staticmethod``    ``def` `getDigit(number):``        ``if` `(number < ``9``):``            ``return` `number``        ``return` `int``(number ``/` `10``) ``+` `number ``%` `10``      ` `    ``# Return sum of odd-place digits in number``    ``@staticmethod``    ``def` `sumOfOddPlace(number):``        ``sum` `=` `0``        ``num ``=` `str``(number) ``+` `""``        ``i ``=` `CreditCard.getSize(number) ``-` `1``        ``while` `(i >``=` `0``):``            ``sum` `+``=` `int``(``str``(num[i]) ``+` `"")``            ``i ``-``=` `2``        ``return` `sum``      ` `    ``# Return true if the digit d is a prefix for number``    ``@staticmethod``    ``def` `prefixMatched(number,  d):``        ``return` `CreditCard.getPrefix(number, CreditCard.getSize(d)) ``=``=` `d``      ` `    ``# Return the number of digits in d``    ``@staticmethod``    ``def` `getSize(d):``        ``num ``=` `str``(d) ``+` `""``        ``return` `len``(num)``      ` `    ``# Return the first k number of digits from``    ``# number. If the number of digits in number``    ``# is less than k, return number.``    ``@staticmethod``    ``def` `getPrefix(number,  k):``        ``if` `(CreditCard.getSize(number) > k):``            ``num ``=` `str``(number) ``+` `""``            ``return` `int``(num[``0``:k])``        ``return` `number` `if` `__name__ ``=``=` `"__main__"``:``    ``CreditCard.main([])` `# This code is contributed by Aarti_Rathi`

C#

 `// C# program to check if a given ``// credit card is valid or not.``using` `System;` `class` `CreditCard {``    ` `    ``// Main Method``    ``public` `static` `void` `Main()``    ``{``        ``long` `number = 5196081888500645L;``        ``Console.Write(number + ``" is "` `+ ``                     ``(isValid(number) ?``                     ``"valid"` `: ``"invalid"``));``    ``}` `    ``// Return true if the card number is valid``    ``public` `static` `bool` `isValid(``long` `number)``    ``{``    ``return` `(getSize(number) >= 13 && ``            ``getSize(number) <= 16) && ``            ``(prefixMatched(number, 4) || ``            ``prefixMatched(number, 5) || ``            ``prefixMatched(number, 37) || ``            ``prefixMatched(number, 6)) && ``            ``((sumOfDoubleEvenPlace(number) + ``            ``sumOfOddPlace(number)) % 10 == 0);``    ``}` `    ``// Get the result from Step 2``    ``public` `static` `int` `sumOfDoubleEvenPlace(``long` `number)``    ``{``        ``int` `sum = 0;``        ``String num = number + ``""``;``        ``for` `(``int` `i = getSize(number) - 2; i >= 0; i -= 2) ``            ``sum += getDigit(``int``.Parse(num[i] + ``""``) * 2);``        ` `        ``return` `sum;``    ``}` `    ``// Return this number if it is a ``    ``// single digit, otherwise, return ``    ``// the sum of the two digits``    ``public` `static` `int` `getDigit(``int` `number)``    ``{``        ``if` `(number < 9)``            ``return` `number;``        ``return` `number / 10 + number % 10;``    ``}` `    ``// Return sum of odd-place digits in number``    ``public` `static` `int` `sumOfOddPlace(``long` `number)``    ``{``        ``int` `sum = 0;``        ``String num = number + ``""``;``        ``for` `(``int` `i = getSize(number) - 1; i >= 0; i -= 2) ``            ``sum += ``int``.Parse(num[i] + ``""``);     ``        ``return` `sum;``    ``}` `    ``// Return true if the digit d``    ``// is a prefix for number``    ``public` `static` `bool` `prefixMatched(``long` `number, ``int` `d)``    ``{``        ``return` `getPrefix(number, getSize(d)) == d;``    ``}` `    ``// Return the number of digits in d``    ``public` `static` `int` `getSize(``long` `d)``    ``{``        ``String num = d + ``""``;``        ``return` `num.Length;``    ``}` `    ``// Return the first k number of digits from ``    ``// number. If the number of digits in number``    ``// is less than k, return number.``    ``public` `static` `long` `getPrefix(``long` `number, ``int` `k)``    ``{``        ``if` `(getSize(number) > k) ``        ``{``            ``String num = number + ``""``;``            ``return` `long``.Parse(num.Substring(0, k));``        ``}``        ``return` `number;``    ``}``}` `// This code is contributed by nitin mittal.`

Javascript

 ``

Output
`5196081888500645 is valid`

Time Complexity: O(n), where n represents the size of the given string.
Auxiliary Space: O(1), no extra space is required, so it is a constant.

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next