# Numpy recarray.flatten() function | Python

• Last Updated : 27 Sep, 2019

In numpy, arrays may have a data-types containing fields, analogous to columns in a spreadsheet. An example is `[(a, int), (b, float)]`, where each entry in the array is a pair of (int, float). Normally, these attributes are accessed using dictionary lookups such as `arr['a'] and arr['b']`. Record arrays allow the fields to be accessed as members of the array, using `arr.a and arr.b`.

`numpy.recarray.flatten()` function returns record arrays in one dimension.

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Syntax : `numpy.recarray.flatten(order='C')`

Parameters:

order : [[‘C’, ‘F’, ‘A’, ‘K’], optional]
‘C’ means to flatten in row-major (C-style) order.
‘F’ means to flatten in column-major (Fortran- style) order.
‘A’ means to flatten in column-major order if a is Fortran contiguous in memory, row-major order otherwise.
‘K’ means to flatten in the order the elements occur in memory. The default is ‘C’.

Return : A copy of the input array, flattened to one dimension.

Code #1 :

 `# Python program explaining``# numpy.recarray.flatten() method ``  ` `# importing numpy as geek``import` `numpy as geek``  ` `# creating input array with 2 different field ``in_arr ``=` `geek.array([[(``5.0``, ``2``), (``3.0``, ``-``4``), (``6.0``, ``9``)],``                     ``[(``9.0``, ``1``), (``5.0``, ``4``), (``-``12.0``, ``-``7``)]],``                     ``dtype ``=``[(``'a'``, ``float``), (``'b'``, ``int``)])`` ` `print` `(``"Input array : "``, in_arr)``  ` `# convert it to a record array,``# using arr.view(np.recarray)``rec_arr ``=` `in_arr.view(geek.recarray)``print``(``"Record array of float: "``, rec_arr.a)``print``(``"Record array of int: "``, rec_arr.b)``  ` `# applying recarray.flatten methods``# to float record in Fortan order``out_arr1 ``=` `rec_arr.a.flatten(order ``=``'F'``)``print` `(``"Output float flattened array in Fortan order: "``, out_arr1) ``  ` `# applying recarray.flatten methods ``# to float record array in default order``out_arr2 ``=` `rec_arr.a.flatten()``print` `(``"Output float flattenedarray in default order : "``, out_arr2)`` ` `# applying recarray.flatten methods``# to int record in 'A' order``out_arr3 ``=` `rec_arr.b.flatten(order ``=``'A'``)``print` `(``"Output int flattened array in A order: "``, out_arr3) ``  ` `# applying recarray.flatten methods ``# to float record array in 'K' order``out_arr4 ``=` `rec_arr.b.flatten(order ``=``'K'``)``print` `(``"Output intt flattened array in K order : "``, out_arr4) `
Output:
```Input array :  [[(  5.,  2) (  3., -4) (  6.,  9)]
[(  9.,  1) (  5.,  4) (-12., -7)]]
Record array of float:  [[  5.   3.   6.]
[  9.   5. -12.]]
Record array of int:  [[ 2 -4  9]
[ 1  4 -7]]
Output float flattened array in Fortan order:  [  5.   9.   3.   5.   6. -12.]
Output float flattenedarray in default order :  [  5.   3.   6.   9.   5. -12.]
Output int flattened array in A order:  [ 2 -4  9  1  4 -7]
Output intt flattened array in K order :  [ 2 -4  9  1  4 -7]
```

My Personal Notes arrow_drop_up