Skip to content
Related Articles

Related Articles

Improve Article
Number of common digits present in two given numbers
  • Difficulty Level : Medium
  • Last Updated : 22 Apr, 2021

Given two positive numbers N and M, the task is to count the number of digits that are present in both N and M.

Examples:

Input: N = 748294, M = 34298156
Output: 4
Explanation: The digits that are present in both the numbers are {4, 8, 2, 9}. Therefore, the required count is 4.

Input: N = 111222, M = 333444
Output: 0
Explanation: No common digits present in the two given numbers.

Approach: The given problem can be solved using Hashing. Follow the steps below to solve the problem:



  • Initialize a variable, say count as 0, to store the number of digits that are common in both the numbers.
  • Initialize two arrays, say freq1[10] and freq2[10] as {0}, to store the count of digits present in the integers N and M respectively.
  • Iterate over the digits of the integer N and increment the count of each digit in freq1[] by 1.
  • Iterate over the digits of the integer M and increment the count of each digit in freq2[] by 1.
  • Iterate over the range [0, 9] and increment the count by 1 if freq1[i] and freq2[i] both exceeds 0.
  • Finally, after completing the above steps, print the count obtained as the required answer.

Below is the implementation of the above approach:

C++14




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count number of digits
// that are common in both N and M
int CommonDigits(int N, int M)
{
    // Stores the count of common digits
    int count = 0;
 
    // Stores the count of digits of N
    int freq1[10] = { 0 };
 
    // Stores the count of digits of M
    int freq2[10] = { 0 };
 
    // Iterate over the digits of N
    while (N > 0) {
 
        // Increment the count of
        // last digit of N
        freq1[N % 10]++;
 
        // Update N
        N = N / 10;
    }
    // Iterate over the digits of M
    while (M > 0) {
 
        // Increment the count of
        // last digit of M
        freq2[M % 10]++;
 
        // Update M
        M = M / 10;
    }
    // Iterate over the range [0, 9]
    for (int i = 0; i < 10; i++) {
 
        // If freq1[i] and freq2[i] both exceeds 0
        if (freq1[i] > 0 & freq2[i] > 0) {
 
            // Increment count by 1
            count++;
        }
    }
 
    // Return the count
    return count;
}
 
// Driver Code
int main()
{
    // Input
    int N = 748294;
    int M = 34298156;
 
    cout << CommonDigits(N, M);
 
    return 0;
}

Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to count number of digits
// that are common in both N and M
static int CommonDigits(int N, int M)
{
     
    // Stores the count of common digits
    int count = 0;
 
    // Stores the count of digits of N
    int freq1[] = new int[10];
 
    // Stores the count of digits of M
    int freq2[] = new int[10];
 
    // Iterate over the digits of N
    while (N > 0)
    {
         
        // Increment the count of
        // last digit of N
        freq1[N % 10]++;
 
        // Update N
        N = N / 10;
    }
     
    // Iterate over the digits of M
    while (M > 0)
    {
         
        // Increment the count of
        // last digit of M
        freq2[M % 10]++;
 
        // Update M
        M = M / 10;
    }
     
    // Iterate over the range [0, 9]
    for(int i = 0; i < 10; i++)
    {
         
        // If freq1[i] and freq2[i] both exceeds 0
        if (freq1[i] > 0 & freq2[i] > 0)
        {
             
            // Increment count by 1
            count++;
        }
    }
 
    // Return the count
    return count;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Input
    int N = 748294;
    int M = 34298156;
 
    System.out.print(CommonDigits(N, M));
}
}
 
// This code is contributed by gauravrajput1

Python3




# Python3 program for the above approach
 
# Function to count number of digits
# that are common in both N and M
def CommonDigits(N, M):
     
    # Stores the count of common digits
    count = 0
 
    # Stores the count of digits of N
    freq1 = [0] * 10
 
    # Stores the count of digits of M
    freq2 = [0] * 10
 
    # Iterate over the digits of N
    while (N > 0):
         
        # Increment the count of
        # last digit of N
        freq1[N % 10] += 1
 
        # Update N
        N = N // 10
         
    # Iterate over the digits of M
    while (M > 0):
         
        # Increment the count of
        # last digit of M
        freq2[M % 10] += 1
 
        # Update M
        M = M // 10
 
    # Iterate over the range [0, 9]
    for i in range(10):
         
        # If freq1[i] and freq2[i] both exceeds 0
        if (freq1[i] > 0 and freq2[i] > 0):
             
            # Increment count by 1
            count += 1
 
    # Return the count
    return count
 
# Driver Code
if __name__ == '__main__':
     
    # Input
    N = 748294
    M = 34298156
 
    print (CommonDigits(N, M))
 
# This code is contributed by mohit kumar 29

C#




// C# program for the above approach
using System;
 
class GFG{
     
// Function to count number of digits
// that are common in both N and M
static int CommonDigits(int N, int M)
{
     
    // Stores the count of common digits
    int count = 0;
 
    // Stores the count of digits of N
    int[] freq1 = new int[10];
 
    // Stores the count of digits of M
    int[] freq2 = new int[10];
 
    // Iterate over the digits of N
    while (N > 0)
    {
         
        // Increment the count of
        // last digit of N
        freq1[N % 10]++;
 
        // Update N
        N = N / 10;
    }
     
    // Iterate over the digits of M
    while (M > 0)
    {
         
        // Increment the count of
        // last digit of M
        freq2[M % 10]++;
 
        // Update M
        M = M / 10;
    }
     
    // Iterate over the range [0, 9]
    for(int i = 0; i < 10; i++)
    {
         
        // If freq1[i] and freq2[i]
        // both exceeds 0
        if (freq1[i] > 0 & freq2[i] > 0)
        {
             
            // Increment count by 1
            count++;
        }
    }
 
    // Return the count
    return count;
}
 
// Driver code
static void Main()
{
     
    // Input
    int N = 748294;
    int M = 34298156;
 
    Console.WriteLine(CommonDigits(N, M));
}
}
 
// This code is contributed by sanjoy_62

Javascript




<script>
 
// javascript program for the above approach
 
// Function to count number of digits
// that are common in both N and M
function CommonDigits(N,M)
{
    // Stores the count of common digits
    var count = 0;
 
    // Stores the count of digits of N
    var freq1 = Array(10).fill(0);
 
    // Stores the count of digits of M
    var freq2 = Array(10).fill(0);
 
    // Iterate over the digits of N
    while (N > 0) {
 
        // Increment the count of
        // last digit of N
        freq1[N % 10]++;
 
        // Update N
        N = Math.floor(N / 10);
    }
    // Iterate over the digits of M
    while (M > 0) {
 
        // Increment the count of
        // last digit of M
        freq2[M % 10]++;
 
        // Update M
        M = Math.floor(M / 10);
    }
    var i;
    // Iterate over the range [0, 9]
    for (i = 0; i < 10; i++) {
 
        // If freq1[i] and freq2[i] both exceeds 0
        if (freq1[i] > 0 & freq2[i] > 0) {
 
            // Increment count by 1
            count++;
        }
    }
 
    // Return the count
    return count;
}
 
// Driver Code
 
    // Input
    var N = 748294;
    var M = 34298156;
 
    document.write(CommonDigits(N, M));
 
</script>
Output: 
4

 

Time Complexity: O(digits(N)+digits(M))
Auxiliary Space: O(10)

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live 




My Personal Notes arrow_drop_up
Recommended Articles
Page :