Skip to content
Related Articles

Related Articles

Improve Article

Nodes from given two BSTs with sum equal to X

  • Difficulty Level : Medium
  • Last Updated : 08 Jun, 2021

Given two Binary search trees and an integer X, the task is to find a pair of nodes, one belonging to the first BST and the second belonging to other such that their sum is equal to X. If there exists such a pair, print Yes else print No.

Examples: 

Input: X = 100
BST 1:
          5 
        /   \ 
       3     7 
      / \   / \ 
     2   4 6   8
BST 2:
     11
      \
       13
Output: No
There is no such pair with given value.

Input: X = 16
BST 1:
          5 
        /   \ 
       3     7 
      / \   / \ 
     2   4 6   8
BST 2:
     11
      \
       13
Output: Yes
5 + 11 = 16

Approach: We will solve this problem using two pointer approach. 
We will create a forward iterator on the first BST and backward on the second. Thus, we will maintain forward and a backward iterator that will iterate the BSTs in the order of in-order and reverse in-order traversal respectively. 

  1. Create a forward and backward iterator for first and second BST respectively. Let’s say the value of nodes they are pointing at are v1 and v2.
  2. Now at each step, 
    • If v1 + v2 = X, we found a pair.
    • If v1 + v2 less than or equal to x, we will make forward iterator point to the next element.
    • If v1 + v2 greater than x, we will make backward iterator point to the previous element.
  3. We will continue the above while both iterators are pointing to a valid node.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Node of the binary tree
struct node {
    int data;
    node* left;
    node* right;
    node(int data)
    {
        this->data = data;
        left = NULL;
        right = NULL;
    }
};
 
// Function that returns true if a pair
// with given sum exists in the given BSTs
bool existsPair(node* root1, node* root2, int x)
{
    // Stack to store nodes for forward and backward
    // iterator
    stack<node *> it1, it2;
 
    // Initializing forward iterator
    node* c = root1;
    while (c != NULL)
        it1.push(c), c = c->left;
 
    // Initializing backward iterator
    c = root2;
    while (c != NULL)
        it2.push(c), c = c->right;
 
    // Two pointer technique
    while (it1.size() and it2.size()) {
 
        // To store the value of the nodes
        // current iterators are pointing to
        int v1 = it1.top()->data, v2 = it2.top()->data;
 
        // If found a valid pair
        if (v1 + v2 == x)
            return true;
 
        // Moving forward iterator
        if (v1 + v2 < x) {
            c = it1.top()->right;
            it1.pop();
            while (c != NULL)
                it1.push(c), c = c->left;
        }
 
        // Moving backward iterator
        else {
            c = it2.top()->left;
            it2.pop();
            while (c != NULL)
                it2.push(c), c = c->right;
        }
    }
 
    // If no such pair found
    return false;
}
 
// Driver code
int main()
{
 
    // First BST
    node* root1 = new node(11);
    root1->right = new node(15);
 
    // Second BST
    node* root2 = new node(5);
    root2->left = new node(3);
    root2->right = new node(7);
    root2->left->left = new node(2);
    root2->left->right = new node(4);
    root2->right->left = new node(6);
    root2->right->right = new node(8);
 
    int x = 23;
 
    if (existsPair(root1, root2, x))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Node of the binary tree
static class node
{
    int data;
    node left;
    node right;
    node(int data)
    {
        this.data = data;
        left = null;
        right = null;
    }
};
 
// Function that returns true if a pair
// with given sum exists in the given BSTs
static boolean existsPair(node root1, node root2, int x)
{
    // Stack to store nodes for forward and backward
    // iterator
    Stack<node> it1 = new Stack(), it2 = new Stack();
 
    // Initializing forward iterator
    node c = root1;
    while (c != null)
    {
        it1.push(c);
        c = c.left;
    }
    // Initializing backward iterator
    c = root2;
    while (c != null)
    {
        it2.push(c);
        c = c.right;
    }
 
    // Two pointer technique
    while (it1.size() > 0 && it2.size() > 0)
    {
 
        // To store the value of the nodes
        // current iterators are pointing to
        int v1 = it1.peek().data, v2 = it2.peek().data;
 
        // If found a valid pair
        if (v1 + v2 == x)
            return true;
 
        // Moving forward iterator
        if (v1 + v2 < x)
        {
            c = it1.peek().right;
            it1.pop();
            while (c != null)
            {
                it1.push(c); c = c.left;
            }
        }
 
        // Moving backward iterator
        else
        {
            c = it2.peek().left;
            it2.pop();
            while (c != null)
            {
                it2.push(c); c = c.right;
            }
        }
    }
 
    // If no such pair found
    return false;
}
 
// Driver code
public static void main(String[] args)
{
    // First BST
    node root1 = new node(11);
    root1.right = new node(15);
 
    // Second BST
    node root2 = new node(5);
    root2.left = new node(3);
    root2.right = new node(7);
    root2.left.left = new node(2);
    root2.left.right = new node(4);
    root2.right.left = new node(6);
    root2.right.right = new node(8);
 
    int x = 23;
 
    if (existsPair(root1, root2, x))
        System.out.println("Yes");
    else
        System.out.println("No");
}
}
 
// This code is contributed by Princi Singh

Python3




# Python3 implementation of the approach
 
# Node of the binary tree
class node:
     
    def __init__ (self, key):
         
        self.data = key
        self.left = None
        self.right = None
 
# Function that returns true if a pair
# with given sum exists in the given BSTs
def existsPair(root1, root2, x):
     
    # Stack to store nodes for forward
    # and backward iterator
    it1, it2 = [], []
 
    # Initializing forward iterator
    c = root1
    while (c != None):
        it1.append(c)
        c = c.left
 
    # Initializing backward iterator
    c = root2
    while (c != None):
        it2.append(c)
        c = c.right
 
    # Two pointer technique
    while (len(it1) > 0 and len(it2) > 0):
 
        # To store the value of the nodes
        # current iterators are pointing to
        v1 = it1[-1].data
        v2 = it2[-1].data
 
        # If found a valid pair
        if (v1 + v2 == x):
            return True
 
        # Moving forward iterator
        if (v1 + v2 < x):
            c = it1[-1].right
            del it1[-1]
             
            while (c != None):
                it1.append(c)
                c = c.left
 
        # Moving backward iterator
        else:
            c = it2[-1].left
            del it2[-1]
             
            while (c != None):
                it2.append(c)
                c = c.right
 
    # If no such pair found
    return False
 
# Driver code
if __name__ == '__main__':
 
    # First BST
    root1 = node(11)
    root1.right = node(15)
 
    # Second BST
    root2 = node(5)
    root2.left = node(3)
    root2.right = node(7)
    root2.left.left = node(2)
    root2.left.right = node(4)
    root2.right.left = node(6)
    root2.right.right = node(8)
 
    x = 23
 
    if (existsPair(root1, root2, x)):
        print("Yes")
    else:
        print("No")
 
# This code is contributed by mohit kumar 29

C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
     
class GFG
{
 
// Node of the binary tree
public class node
{
    public int data;
    public node left;
    public node right;
    public node(int data)
    {
        this.data = data;
        left = null;
        right = null;
    }
};
 
// Function that returns true if a pair
// with given sum exists in the given BSTs
static bool existsPair(node root1, node root2, int x)
{
    // Stack to store nodes for forward and backward
    // iterator
    Stack<node> it1 = new Stack<node>(), it2 = new Stack<node>();
 
    // Initializing forward iterator
    node c = root1;
    while (c != null)
    {
        it1.Push(c);
        c = c.left;
    }
     
    // Initializing backward iterator
    c = root2;
    while (c != null)
    {
        it2.Push(c);
        c = c.right;
    }
 
    // Two pointer technique
    while (it1.Count > 0 && it2.Count > 0)
    {
 
        // To store the value of the nodes
        // current iterators are pointing to
        int v1 = it1.Peek().data, v2 = it2.Peek().data;
 
        // If found a valid pair
        if (v1 + v2 == x)
            return true;
 
        // Moving forward iterator
        if (v1 + v2 < x)
        {
            c = it1.Peek().right;
            it1.Pop();
            while (c != null)
            {
                it1.Push(c); c = c.left;
            }
        }
 
        // Moving backward iterator
        else
        {
            c = it2.Peek().left;
            it2.Pop();
            while (c != null)
            {
                it2.Push(c); c = c.right;
            }
        }
    }
 
    // If no such pair found
    return false;
}
 
// Driver code
public static void Main(String[] args)
{
    // First BST
    node root1 = new node(11);
    root1.right = new node(15);
 
    // Second BST
    node root2 = new node(5);
    root2.left = new node(3);
    root2.right = new node(7);
    root2.left.left = new node(2);
    root2.left.right = new node(4);
    root2.right.left = new node(6);
    root2.right.right = new node(8);
 
    int x = 23;
 
    if (existsPair(root1, root2, x))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
// Javascript implementation of the approach
 
// Node of the binary tree
class node
{
    constructor(data)
    {
        this.data = data;
        this.left = null;
        this.right = null;
    }
}
 
// Function that returns true if a pair
// with given sum exists in the given BSTs
function existsPair(root1,root2,x)
{
    // Stack to store nodes for forward and backward
    // iterator
    let it1 =[], it2 = [];
  
    // Initializing forward iterator
    let c = root1;
    while (c != null)
    {
        it1.push(c);
        c = c.left;
    }
    // Initializing backward iterator
    c = root2;
    while (c != null)
    {
        it2.push(c);
        c = c.right;
    }
  
    // Two pointer technique
    while (it1.length > 0 && it2.length > 0)
    {
  
        // To store the value of the nodes
        // current iterators are pointing to
        let v1 = it1[it1.length-1].data, v2 = it2[it2.length-1].data;
  
        // If found a valid pair
        if (v1 + v2 == x)
            return true;
  
        // Moving forward iterator
        if (v1 + v2 < x)
        {
            c = it1[it1.length-1].right;
            it1.pop();
            while (c != null)
            {
                it1.push(c); c = c.left;
            }
        }
  
        // Moving backward iterator
        else
        {
            c = it2[it2.length-1].left;
            it2.pop();
            while (c != null)
            {
                it2.push(c); c = c.right;
            }
        }
    }
  
    // If no such pair found
    return false;
}
// Driver code
 
// First BST
    let root1 = new node(11);
    root1.right = new node(15);
  
    // Second BST
    let root2 = new node(5);
    root2.left = new node(3);
    root2.right = new node(7);
    root2.left.left = new node(2);
    root2.left.right = new node(4);
    root2.right.left = new node(6);
    root2.right.right = new node(8);
  
    let x = 23;
  
    if (existsPair(root1, root2, x))
        document.write("Yes");
    else
        document.write("No");
                                 
// This code is contributed by patel2127
</script>
Output: 
Yes

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :