Given a linked list L of integers, the task is to return a linked list of integers such that it contains next greater element for each element in the given linked list. If there doesn’t any greater element for any element then insert 0 for it.
Examples:
Input: 2->1->3->0->5
Output: 3->3->5->5->0Input: 1->2->3
Output: 2->3->0
Naive Approach: The naive approach is traverse the linked list L, and for each element in the linked list find the next greater element in the list by traversing the whole string from the current element.
Time Complexity: O(N2)
Efficient Approach: The above naive approach can be optimized by maintaining a monotonically decreasing stack of elements traversed. If a greater element is found append it to the resultant linked list L’ else append 0. Below are the steps:
- Push the first node to stack.
- Pick the rest of the node one by one and follow the following steps in the loop:
- Mark the current node as next node.
- If the stack is not empty, compare the top node value of the stack with next node value.
- If next node value is greater than the top node value then, Pop the top node from the stack and next is the next greater element for the popped node.
- Keep popping the node from the stack while the popped node value is smaller than next node value. next node will becomes the next greater element for all such popped node.
- Finally, push the next node in the stack.
- After the loop in step 2 is over, pop all the node from the stack and print 0 as the next element for them.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // List Node struct ListNode { int val; ListNode* next; ListNode( int x) { val = x; next = NULL; } }; // Function to reverse the LL void rev(ListNode** head) { ListNode *pre, *curr, *nex; pre = NULL; curr = *head; nex = curr->next; // Till current is not NULL while (curr) { curr->next = pre; pre = curr; curr = nex; nex = (curr) ? curr->next : NULL; } *head = pre; } // Function to print a LL node void printList(ListNode* head) { while (head) { cout << head->val << ' ' ; head = head->next; } } // Function to find the next greater // element in the list ListNode* nextLargerLL(ListNode* head) { if (head == NULL) return NULL; // Dummy Node ListNode* res = new ListNode(-1); ListNode* temp = res; // Reverse the LL rev(&head); stack< int > st; while (head) { // Initial Condition if (st.empty()) { temp->next = new ListNode(0); st.push(head->val); } else { // Maintain Monotonicity // Decreasing stack of element while (!st.empty() && st.top() <= head->val) st.pop(); // Update result LL if (st.empty()) { temp->next = new ListNode(0); st.push(head->val); } else { temp->next = new ListNode(st.top()); st.push(head->val); } } head = head->next; temp = temp->next; } // Delete Dummy Node temp = res; res = res->next; delete temp; // Reverse result LL rev(&res); return res; } // Driver Code int main() { // Given Linked List ListNode* head = new ListNode(2); ListNode* curr = head; curr->next = new ListNode(1); curr = curr->next; curr->next = new ListNode(3); curr = curr->next; curr->next = new ListNode(0); curr = curr->next; curr->next = new ListNode(5); curr = curr->next; // Function Call printList(nextLargerLL(head)); return 0; } |
Java
// Java program for the above approach import java.util.*; public class linkedList { ListNode head = null ; // ListNode class ListNode { int val; ListNode next; public ListNode( int val) { this .val = val; next = null ; } } // Function to reverse the Linked List ListNode reverse(ListNode head) { ListNode prev = null , next = null , curr = head; while (curr != null ) { next = curr.next; curr.next = prev; prev = curr; curr = next; } return prev; } // Function to find the next greater // element in the list ListNode nextLargerLL(ListNode head) { if (head == null ) return head; // Dummy Node ListNode res = new ListNode(- 1 ); ListNode temp = res; // Reverse the Linked List head = reverse(head); Stack<Integer> st = new Stack<>(); while (head != null ) { // Initial Condition if (st.empty()) { temp.next = new ListNode( 0 ); st.push(head.val); } else { // Maintain Monotonicity // Decreasing stack of element while (!st.empty() && st.peek() <= head.val) st.pop(); // Update result Linked List if (st.empty()) { temp.next = new ListNode( 0 ); st.push(head.val); } else { temp.next = new ListNode(st.peek()); st.push(head.val); } } head = head.next; temp = temp.next; } temp = res; res = res.next; // Reverse result Linked List res = reverse(res); return res; } public void push( int new_data) { /* allocate node */ ListNode new_node = new ListNode(new_data); /* link the old list off the new node */ new_node.next = head; /* move the head to point to the new node */ head = new_node; } // Utility function to print the linked list public void printList(ListNode head) { ListNode temp = head; while (temp != null ) { System.out.print(temp.val + " " ); temp = temp.next; } } // Driver Code public static void main(String[] args) { linkedList ll = new linkedList(); ll.push( 5 ); ll.push( 0 ); ll.push( 3 ); ll.push( 1 ); ll.push( 2 ); // Function Call ll.printList(ll.nextLargerLL(ll.head)); } } |
Python3
# Python3 program for the above approach # List Node class ListNode: def __init__( self , x): self .val = x self . next = None # Function to reverse the LL def rev(head): pre = None ; curr = head; nex = curr. next ; # Till current is not None while (curr): curr. next = pre; pre = curr; curr = nex; nex = (curr. next ) if curr else None head = pre return head # Function to print a LL node def printList(head): while (head): print ( str (head.val), end = ' ' ) head = head. next ; # Function to find the next greater # element in the list def nextLargerLL(head): if (head = = None ): return None ; # Dummy Node res = ListNode( - 1 ); temp = res; # Reverse the LL head = rev(head); st = [] while (head): # Initial Condition if ( len (st) = = 0 ): temp. next = ListNode( 0 ); st.append(head.val); else : # Maintain Monotonicity # Decreasing stack of element while ( len (st) ! = 0 and st[ - 1 ]< = head.val): st.pop(); # Update result LL if ( len (st) = = 0 ): temp. next = ListNode( 0 ); st.append(head.val); else : temp. next = ListNode(st[ - 1 ]); st.append(head.val); head = head. next ; temp = temp. next ; # Delete Dummy Node temp = res; res = res. next ; del temp; # Reverse result LL res = rev(res); return res; # Driver Code if __name__ = = '__main__' : # Given Linked List head = ListNode( 2 ); curr = head; curr. next = ListNode( 1 ); curr = curr. next ; curr. next = ListNode( 3 ); curr = curr. next ; curr. next = ListNode( 0 ); curr = curr. next ; curr. next = ListNode( 5 ); curr = curr. next ; # Function Call printList(nextLargerLL(head)); # This code is contributed by rutvik_56 |
C#
// C# program for the above approach using System; using System.Collections.Generic; class linkedList{ ListNode head = null ; // ListNode public class ListNode { public int val; public ListNode next; public ListNode( int val) { this .val = val; next = null ; } } // Function to reverse the Linked List ListNode reverse(ListNode head) { ListNode prev = null , next = null , curr = head; while (curr != null ) { next = curr.next; curr.next = prev; prev = curr; curr = next; } return prev; } // Function to find the next greater // element in the list ListNode nextLargerLL(ListNode head) { if (head == null ) return head; // Dummy Node ListNode res = new ListNode(-1); ListNode temp = res; // Reverse the Linked List head = reverse(head); Stack< int > st = new Stack< int >(); while (head != null ) { // Initial Condition if (st.Count == 0) { temp.next = new ListNode(0); st.Push(head.val); } else { // Maintain Monotonicity // Decreasing stack of element while (st.Count != 0 && st.Peek() <= head.val) st.Pop(); // Update result Linked List if (st.Count == 0) { temp.next = new ListNode(0); st.Push(head.val); } else { temp.next = new ListNode(st.Peek()); st.Push(head.val); } } head = head.next; temp = temp.next; } temp = res; res = res.next; // Reverse result Linked List res = reverse(res); return res; } public void Push( int new_data) { // Allocate node ListNode new_node = new ListNode(new_data); // Link the old list off the new node new_node.next = head; // Move the head to point to the new node head = new_node; } // Utility function to print the linked list public void printList(ListNode head) { ListNode temp = head; while (temp != null ) { Console.Write(temp.val + " " ); temp = temp.next; } } // Driver Code public static void Main(String[] args) { linkedList ll = new linkedList(); ll.Push(5); ll.Push(0); ll.Push(3); ll.Push(1); ll.Push(2); // Function Call ll.printList(ll.nextLargerLL(ll.head)); } } // This code is contributed by Amit Katiyar |
3 3 5 5 0
Time Complexity: O(N)
Auxiliary Space: O(N)
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.