Open In App
Related Articles

N/3 repeated number in an array with O(1) space

Improve Article
Improve
Save Article
Save
Like Article
Like

We are given a read only array of n integers. Find any element that appears more than n/3 times in the array in linear time and constant additional space. If no such element exists, return -1.

Examples:  

Input : [10, 10, 20, 30, 10, 10]
Output : 10
10 occurs 4 times which is more than 6/3.

Input : [20, 30, 10, 10, 5, 4, 20, 1, 2]
Output : -1
Recommended Practice

The idea is based on Moore’s Voting algorithm.  We first find two candidates. Then we check if any of these two candidates is actually a majority. Below is the solution for above approach.  

Implementation:

C++




// CPP program to find if any element appears
// more than n/3.
#include <bits/stdc++.h>
using namespace std;
 
int appearsNBy3(int arr[], int n)
{
    int count1 = 0, count2 = 0;
    int first=INT_MAX    , second=INT_MAX    ;
 
    for (int i = 0; i < n; i++) {
 
        // if this element is previously seen,
        // increment count1.
        if (first == arr[i])
            count1++;
 
        // if this element is previously seen,
        // increment count2.
        else if (second == arr[i])
            count2++;
     
        else if (count1 == 0) {
            count1++;
            first = arr[i];
        }
 
        else if (count2 == 0) {
            count2++;
            second = arr[i];
        }
 
        // if current element is different from
        // both the previously seen variables,
        // decrement both the counts.
        else {
            count1--;
            count2--;
        }
    }
 
    count1 = 0;
    count2 = 0;
 
    // Again traverse the array and find the
    // actual counts.
    for (int i = 0; i < n; i++) {
        if (arr[i] == first)
            count1++;
 
        else if (arr[i] == second)
            count2++;
    }
 
    if (count1 > n / 3)
        return first;
 
    if (count2 > n / 3)
        return second;
 
    return -1;
}
 
int main()
{
    int arr[] = { 1, 2, 3, 1, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << appearsNBy3(arr, n) << endl;
    return 0;
}


Java




// Java program to find if any element appears
// more than n/3.
class GFG {
     
    static int appearsNBy3(int arr[], int n)
    {
        int count1 = 0, count2 = 0;
         
        // take the integers as the maximum
        // value of integer hoping the integer
        // would not be present in the array
        int first =  Integer.MIN_VALUE;
        int second = Integer.MAX_VALUE;
     
        for (int i = 0; i < n; i++) {
     
            // if this element is previously
            // seen, increment count1.
            if (first == arr[i])
                count1++;
     
            // if this element is previously
            // seen, increment count2.
            else if (second == arr[i])
                count2++;
         
            else if (count1 == 0) {
                count1++;
                first = arr[i];
            }
     
            else if (count2 == 0) {
                count2++;
                second = arr[i];
            }
     
            // if current element is different
            // from both the previously seen
            // variables, decrement both the
            // counts.
            else {
                count1--;
                count2--;
            }
        }
     
        count1 = 0;
        count2 = 0;
     
        // Again traverse the array and
        // find the actual counts.
        for (int i = 0; i < n; i++) {
            if (arr[i] == first)
                count1++;
     
            else if (arr[i] == second)
                count2++;
        }
     
        if (count1 > n / 3)
            return first;
     
        if (count2 > n / 3)
            return second;
     
        return -1;
    }
     
    // Driver code
    public static void main(String args[])
    {
        int arr[] = { 1, 2, 3, 1, 1 };
        int n = arr.length;
        System.out.println(appearsNBy3(arr, n));
         
    }
}
 
// This code is contributed by Arnab Kundu


Python 3




# Python 3 program to find if
# any element appears more than
# n/3.
import sys
 
def appearsNBy3(arr, n):
 
    count1 = 0
    count2 = 0
    first = sys.maxsize
    second = sys.maxsize
 
    for i in range(0, n):
 
        # if this element is
        # previously seen,
        # increment count1.
        if (first == arr[i]):
            count1 += 1
 
        # if this element is
        # previously seen,
        # increment count2.
        elif (second == arr[i]):
            count2 += 1
     
        elif (count1 == 0):
            count1 += 1
            first = arr[i]
 
        elif (count2 == 0):
            count2 += 1
            second = arr[i]
         
 
        # if current element is
        # different from both
        # the previously seen
        # variables, decrement
        # both the counts.
        else:
            count1 -= 1
            count2 -= 1
         
     
 
    count1 = 0
    count2 = 0
 
    # Again traverse the array
    # and find the actual counts.
    for i in range(0, n):
        if (arr[i] == first):
            count1 += 1
 
        elif (arr[i] == second):
            count2 += 1
     
 
    if (count1 > n / 3):
        return first
 
    if (count2 > n / 3):
        return second
 
    return -1
 
# Driver code
arr = [1, 2, 3, 1, 1 ]
n = len(arr)
print(appearsNBy3(arr, n))
 
# This code is contributed by
# Smitha


C#




// C# program to find if any element appears
// more than n/3.
using System;
 
public class GFG {
     
    static int appearsNBy3(int []arr, int n)
    {
        int count1 = 0, count2 = 0;
         
        // take the integers as the maximum
        // value of integer hoping the integer
        // would not be present in the array
        int first = int.MaxValue;
        int second = int.MaxValue;
     
        for (int i = 1; i < n; i++) {
     
            // if this element is previously
            // seen, increment count1.
            if (first == arr[i])
                count1++;
     
            // if this element is previously
            // seen, increment count2.
            else if (second == arr[i])
                count2++;
         
            else if (count1 == 0) {
                count1++;
                first = arr[i];
            }
     
            else if (count2 == 0) {
                count2++;
                second = arr[i];
            }
     
            // if current element is different
            // from both the previously seen
            // variables, decrement both the
            // counts.
            else {
                count1--;
                count2--;
            }
        }
     
        count1 = 0;
        count2 = 0;
     
        // Again traverse the array and
        // find the actual counts.
        for (int i = 0; i < n; i++) {
            if (arr[i] == first)
                count1++;
     
            else if (arr[i] == second)
                count2++;
        }
     
        if (count1 > n / 3)
            return first;
     
        if (count2 > n / 3)
            return second;
     
        return -1;
    }
     
    // Driver code
    static public void Main(String []args)
    {
        int []arr = { 1, 2, 3, 1, 1 };
        int n = arr.Length;
        Console.WriteLine(appearsNBy3(arr, n));
    }
}
 
// This code is contributed by Arnab Kundu


PHP




<?php
// PHP program to find if any element appears
// more than n/3.
 
function appearsNBy3( $arr$n)
{
     $count1 = 0; $count2 = 0;
    $first = PHP_INT_MAX ; $second = PHP_INT_MAX ;
 
    for ( $i = 0; $i < $n; $i++) {
 
        // if this element is previously seen,
        // increment count1.
        if ($first == $arr[$i])
            $count1++;
 
        // if this element is previously seen,
        // increment count2.
        else if ($second == $arr[$i])
            $count2++;
     
        else if ($count1 == 0) {
            $count1++;
            $first = $arr[$i];
        }
 
        else if ($count2 == 0) {
            $count2++;
            $second = $arr[$i];
        }
 
        // if current element is different from
        // both the previously seen variables,
        // decrement both the counts.
        else {
            $count1--;
            $count2--;
        }
    }
 
    $count1 = 0;
    $count2 = 0;
 
    // Again traverse the array and find the
    // actual counts.
    for ($i = 0; $i < $n; $i++) {
        if ($arr[$i] == $first)
            $count1++;
 
        else if ($arr[$i] == $second)
            $count2++;
    }
 
    if ($count1 > $n / 3)
        return $first;
 
    if ($count2 > $n / 3)
        return $second;
 
    return -1;
}
 
// Driver code
$arr = array( 1, 2, 3, 1, 1 );
$n = count($arr);
echo appearsNBy3($arr, $n) ;
 
// This code is contributed by anuj_67.
?>


Javascript




<script>
    // Javascript program to find if any element appears more than n/3.
     
    function appearsNBy3(arr, n)
    {
        let count1 = 0, count2 = 0;
          
        // take the integers as the maximum
        // value of integer hoping the integer
        // would not be present in the array
        let first = Number.MAX_VALUE;
        let second = Number.MAX_VALUE;
      
        for (let i = 1; i < n; i++) {
      
            // if this element is previously
            // seen, increment count1.
            if (first == arr[i])
                count1++;
      
            // if this element is previously
            // seen, increment count2.
            else if (second == arr[i])
                count2++;
          
            else if (count1 == 0) {
                count1++;
                first = arr[i];
            }
      
            else if (count2 == 0) {
                count2++;
                second = arr[i];
            }
      
            // if current element is different
            // from both the previously seen
            // variables, decrement both the
            // counts.
            else {
                count1--;
                count2--;
            }
        }
      
        count1 = 0;
        count2 = 0;
      
        // Again traverse the array and
        // find the actual counts.
        for (let i = 0; i < n; i++) {
            if (arr[i] == first)
                count1++;
      
            else if (arr[i] == second)
                count2++;
        }
      
        if (count1 > parseInt(n / 3, 10))
            return first;
      
        if (count2 > parseInt(n / 3, 10))
            return second;
      
        return -1;
    }
     
    let arr = [ 1, 2, 3, 1, 1 ];
    let n = arr.length;
    document.write(appearsNBy3(arr, n));
 
// This code is contributed by divyeshrabadiya07.
</script>


Output

1

Complexity Analysis:

  • Time Complexity:  O(n)
    First pass of the algorithm takes complete traversal over the array contributing to O(n) and another O(n) is consumed in checking if count1 and count2 is greater than floor(n/3) times.
  • Space Complexity: O(1)
    As no extra space is required so space complexity is constant

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 05 Sep, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials