We are given a read only array of n integers. Find any element that appears more than n/3 times in the array in linear time and constant additional space. If no such element exists, return -1.
Examples:
Input : [10, 10, 20, 30, 10, 10]
Output : 10
10 occurs 4 times which is more than 6/3.
Input : [20, 30, 10, 10, 5, 4, 20, 1, 2]
Output : -1
The idea is based on Moore’s Voting algorithm. We first find two candidates. Then we check if any of these two candidates is actually a majority. Below is the solution for above approach.
Implementation:
C++
#include <bits/stdc++.h>
using namespace std;
int appearsNBy3( int arr[], int n)
{
int count1 = 0, count2 = 0;
int first=INT_MAX , second=INT_MAX ;
for ( int i = 0; i < n; i++) {
if (first == arr[i])
count1++;
else if (second == arr[i])
count2++;
else if (count1 == 0) {
count1++;
first = arr[i];
}
else if (count2 == 0) {
count2++;
second = arr[i];
}
else {
count1--;
count2--;
}
}
count1 = 0;
count2 = 0;
for ( int i = 0; i < n; i++) {
if (arr[i] == first)
count1++;
else if (arr[i] == second)
count2++;
}
if (count1 > n / 3)
return first;
if (count2 > n / 3)
return second;
return -1;
}
int main()
{
int arr[] = { 1, 2, 3, 1, 1 };
int n = sizeof (arr) / sizeof (arr[0]);
cout << appearsNBy3(arr, n) << endl;
return 0;
}
|
Java
class GFG {
static int appearsNBy3( int arr[], int n)
{
int count1 = 0 , count2 = 0 ;
int first = Integer.MIN_VALUE;
int second = Integer.MAX_VALUE;
for ( int i = 0 ; i < n; i++) {
if (first == arr[i])
count1++;
else if (second == arr[i])
count2++;
else if (count1 == 0 ) {
count1++;
first = arr[i];
}
else if (count2 == 0 ) {
count2++;
second = arr[i];
}
else {
count1--;
count2--;
}
}
count1 = 0 ;
count2 = 0 ;
for ( int i = 0 ; i < n; i++) {
if (arr[i] == first)
count1++;
else if (arr[i] == second)
count2++;
}
if (count1 > n / 3 )
return first;
if (count2 > n / 3 )
return second;
return - 1 ;
}
public static void main(String args[])
{
int arr[] = { 1 , 2 , 3 , 1 , 1 };
int n = arr.length;
System.out.println(appearsNBy3(arr, n));
}
}
|
Python 3
import sys
def appearsNBy3(arr, n):
count1 = 0
count2 = 0
first = sys.maxsize
second = sys.maxsize
for i in range ( 0 , n):
if (first = = arr[i]):
count1 + = 1
elif (second = = arr[i]):
count2 + = 1
elif (count1 = = 0 ):
count1 + = 1
first = arr[i]
elif (count2 = = 0 ):
count2 + = 1
second = arr[i]
else :
count1 - = 1
count2 - = 1
count1 = 0
count2 = 0
for i in range ( 0 , n):
if (arr[i] = = first):
count1 + = 1
elif (arr[i] = = second):
count2 + = 1
if (count1 > n / 3 ):
return first
if (count2 > n / 3 ):
return second
return - 1
arr = [ 1 , 2 , 3 , 1 , 1 ]
n = len (arr)
print (appearsNBy3(arr, n))
|
C#
using System;
public class GFG {
static int appearsNBy3( int []arr, int n)
{
int count1 = 0, count2 = 0;
int first = int .MaxValue;
int second = int .MaxValue;
for ( int i = 1; i < n; i++) {
if (first == arr[i])
count1++;
else if (second == arr[i])
count2++;
else if (count1 == 0) {
count1++;
first = arr[i];
}
else if (count2 == 0) {
count2++;
second = arr[i];
}
else {
count1--;
count2--;
}
}
count1 = 0;
count2 = 0;
for ( int i = 0; i < n; i++) {
if (arr[i] == first)
count1++;
else if (arr[i] == second)
count2++;
}
if (count1 > n / 3)
return first;
if (count2 > n / 3)
return second;
return -1;
}
static public void Main(String []args)
{
int []arr = { 1, 2, 3, 1, 1 };
int n = arr.Length;
Console.WriteLine(appearsNBy3(arr, n));
}
}
|
PHP
<?php
function appearsNBy3( $arr , $n )
{
$count1 = 0; $count2 = 0;
$first = PHP_INT_MAX ; $second = PHP_INT_MAX ;
for ( $i = 0; $i < $n ; $i ++) {
if ( $first == $arr [ $i ])
$count1 ++;
else if ( $second == $arr [ $i ])
$count2 ++;
else if ( $count1 == 0) {
$count1 ++;
$first = $arr [ $i ];
}
else if ( $count2 == 0) {
$count2 ++;
$second = $arr [ $i ];
}
else {
$count1 --;
$count2 --;
}
}
$count1 = 0;
$count2 = 0;
for ( $i = 0; $i < $n ; $i ++) {
if ( $arr [ $i ] == $first )
$count1 ++;
else if ( $arr [ $i ] == $second )
$count2 ++;
}
if ( $count1 > $n / 3)
return $first ;
if ( $count2 > $n / 3)
return $second ;
return -1;
}
$arr = array ( 1, 2, 3, 1, 1 );
$n = count ( $arr );
echo appearsNBy3( $arr , $n ) ;
?>
|
Javascript
<script>
function appearsNBy3(arr, n)
{
let count1 = 0, count2 = 0;
let first = Number.MAX_VALUE;
let second = Number.MAX_VALUE;
for (let i = 1; i < n; i++) {
if (first == arr[i])
count1++;
else if (second == arr[i])
count2++;
else if (count1 == 0) {
count1++;
first = arr[i];
}
else if (count2 == 0) {
count2++;
second = arr[i];
}
else {
count1--;
count2--;
}
}
count1 = 0;
count2 = 0;
for (let i = 0; i < n; i++) {
if (arr[i] == first)
count1++;
else if (arr[i] == second)
count2++;
}
if (count1 > parseInt(n / 3, 10))
return first;
if (count2 > parseInt(n / 3, 10))
return second;
return -1;
}
let arr = [ 1, 2, 3, 1, 1 ];
let n = arr.length;
document.write(appearsNBy3(arr, n));
</script>
|
Complexity Analysis:
- Time Complexity: O(n)
First pass of the algorithm takes complete traversal over the array contributing to O(n) and another O(n) is consumed in checking if count1 and count2 is greater than floor(n/3) times.
- Space Complexity: O(1)
As no extra space is required so space complexity is constant
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
05 Sep, 2022
Like Article
Save Article