Given two positive integers N and K, the task is to find the value of N after incrementing the value of N in each operation by its smallest divisor exceeding N ( exceeding 1 ), exactly K times.
Examples:
Input: N = 5, K = 2
Output: 12
Explanation:
Smallest divisor of N (= 5) is 5. Therefore, N = 5 + 5 = 10.
Smallest divisor of N (= 10) is 2. Therefore, N = 5 + 2 = 12.
Therefore, the required output is 12.Input: N = 6, K = 4
Output: 14
Naive Approach: The simplest approach to solve this problem to iterate over the range [1, K] using variable i and in each operation, find the smallest divisors greater than 1 of N and increment the value of N by the smallest divisor greater than 1 of N. Finally, print the value of N.
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to find the smallest // divisor of N greater than 1 int smallestDivisorGr1( int N) { for ( int i = 2; i <= sqrt (N); i++) { // If i is a divisor // of N if (N % i == 0) { return i; } } // If N is a prime number return N; } // Function to find the value of N by // performing the operations K times int findValOfNWithOperat( int N, int K) { // Iterate over the range [1, K] for ( int i = 1; i <= K; i++) { // Update N N += smallestDivisorGr1(N); } return N; } // Driver Code int main() { int N = 6, K = 4; cout << findValOfNWithOperat(N, K); return 0; } |
Java
// Java program to implement // the above approach class GFG{ // Function to find the smallest // divisor of N greater than 1 static int smallestDivisorGr1( int N) { for ( int i = 2 ; i <= Math.sqrt(N); i++) { // If i is a divisor // of N if (N % i == 0 ) { return i; } } // If N is a prime number return N; } // Function to find the value of N by // performing the operations K times static int findValOfNWithOperat( int N, int K) { // Iterate over the range [1, K] for ( int i = 1 ; i <= K; i++) { // Update N N += smallestDivisorGr1(N); } return N; } // Driver Code public static void main(String[] args) { int N = 6 , K = 4 ; System.out.print(findValOfNWithOperat(N, K)); } } // This code is contributed by shikhasingrajput |
C#
// C# program to implement // the above approach using System; public class GFG { // Function to find the smallest // divisor of N greater than 1 static int smallestDivisorGr1( int N) { for ( int i = 2; i <= Math.Sqrt(N); i++) { // If i is a divisor // of N if (N % i == 0) { return i; } } // If N is a prime number return N; } // Function to find the value of N by // performing the operations K times static int findValOfNWithOperat( int N, int K) { // Iterate over the range [1, K] for ( int i = 1; i <= K; i++) { // Update N N += smallestDivisorGr1(N); } return N; } // Driver Code public static void Main(String[] args) { int N = 6, K = 4; Console.Write(findValOfNWithOperat(N, K)); } } // This code is contributed by 29AjayKumar |
14
Time Complexity: O(K * √N)
Auxiliary Space: O(1)
Efficient Approach: Follow the steps below to solve the problem:
- If N is an even number then update the value of N to (N + K * 2).
- Otherwise, find the smallest positive divisor greater than 1 of N say, smDiv and update the value N to (N + smDiv + (K – 1) * 2)
- Finally, print the value of N.
Below is the implementation of the above approach:
C++14
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to find the smallest // divisor of N greater than 1 int smallestDivisorGr1( int N) { for ( int i = 2; i <= sqrt (N); i++) { // If i is a divisor // of N if (N % i == 0) { return i; } } // If N is a prime number return N; } // Function to find the value of N by // performing the operations K times int findValOfNWithOperat( int N, int K) { // If N is an even number if (N % 2 == 0) { // Update N N += K * 2; } // If N is an odd number else { // Update N N += smallestDivisorGr1(N) + (K - 1) * 2; } return N; } // Driver Code int main() { int N = 6, K = 4; cout << findValOfNWithOperat(N, K); return 0; } |
14
Time Complexity: O(√N)
Auxiliary Space: O(1)
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.