Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Minimum number of subsequences required to convert one string to another

  • Last Updated : 07 Aug, 2021

Given two strings A and B consisting of only lowercase letters, the task is to find the minimum number of subsequences required from A to form B.

Examples: 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: A = “abbace” B = “acebbaae” 
Output:
Explanation: 
Sub-sequences “ace”, “bba”, “ae” from string A used to form string B



Input: A = “abc” B = “cbacbacba” 
Output:
 

Approach:  

  • Maintain an array for each character of A which will store its indexes in increasing order.
  • Traverse through each element of B and increase the counter whenever there is a need for new subsequence.
  • Maintain a variable minIndex which will show that elements greater than this index can be taken in current subsequence otherwise increase the counter and update the minIndex to -1.

Below is the implementation of the above approach. 

C++




// C++ program to find the Minimum number
// of subsequences required to convert
// one string to another
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the no of subsequences
int minSubsequnces(string A, string B)
{
    vector<int> v[26];
    int minIndex = -1, cnt = 1, j = 0;
    int flag = 0;
 
    for (int i = 0; i < A.length(); i++) {
 
        // Push the values of indexes of each character
        int p = (int)A[i] - 97;
        v[p].push_back(i);
    }
 
    while (j < B.length()) {
        int p = (int)B[j] - 97;
 
        // Find the next index available in the array
        int k = upper_bound(v[p].begin(),
                            v[p].end(), minIndex)
                - v[p].begin();
 
        // If Character is not in string A
        if (v[p].size() == 0) {
            flag = 1;
            break;
        }
 
        // Check if the next index is not equal to the
        // size of array which means there is no index
        // greater than minIndex in the array
        if (k != v[p].size()) {
 
            // Update value of minIndex with this index
            minIndex = v[p][k];
            j = j + 1;
        }
        else {
 
            // Update the value of counter
            // and minIndex for next operation
            cnt = cnt + 1;
            minIndex = -1;
        }
    }
    if (flag == 1) {
        return -1;
    }
    return cnt;
}
 
// Driver Code
int main()
{
    string A1 = "abbace";
    string B1 = "acebbaae";
    cout << minSubsequnces(A1, B1) << endl;
    return 0;
}

Python3




# Python3 program to find the Minimum number
# of subsequences required to convert
# one to another
from bisect import bisect as upper_bound
 
# Function to find the no of subsequences
def minSubsequnces(A, B):
    v = [[] for i in range(26)]
    minIndex = -1
    cnt = 1
    j = 0
    flag = 0
 
    for i in range(len(A)):
 
        # Push the values of indexes of each character
        p = ord(A[i]) - 97
        v[p].append(i)
 
    while (j < len(B)):
        p = ord(B[j]) - 97
 
        # Find the next index available in the array
        k = upper_bound(v[p], minIndex)
 
        # If Character is not in A
        if (len(v[p]) == 0):
            flag = 1
            break
 
        # Check if the next index is not equal to the
        # size of array which means there is no index
        # greater than minIndex in the array
        if (k != len(v[p])):
 
            # Update value of minIndex with this index
            minIndex = v[p][k]
            j = j + 1
        else:
 
            # Update the value of counter
            # and minIndex for next operation
            cnt = cnt + 1
            minIndex = -1
    if (flag == 1):
        return -1
    return cnt
 
# Driver Code
A1 = "abbace"
B1 = "acebbaae"
print(minSubsequnces(A1, B1))
 
# This code is contributed by mohit kumar 29
Output: 
3

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :