Minimum cost to make Longest Common Subsequence of length k

Given two string X, Y and an integer k. Now the task is to convert string X with minimum cost such that the Longest Common Subsequence of X and Y after conversion is of length k. The cost of conversion is calculated as XOR of old character value and new character value. Character value of ‘a’ is 0, ‘b’ is 1 and so on.

Examples:

Input : X = "abble",
Y = "pie",
k = 2
Output : 25 If you changed 'a' to 'z', it will cost 0 XOR 25.

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

The problem can be solved by slight change in Dynamic Programming problem of Longest Increasing Subsequence. Instead of two states, we maintain three states.
Note, that if k > min(n, m) then it’s impossible to attain LCS of atleast k length, else it’s always possible.
Let dp[i][j][p] stores the minimum cost to achieve LCS of length p in x[0…i] and y[0….j].
With base step as dp[i][j] = 0 because we can achieve LCS of 0 legth without any cost and for i < 0 or j 0 in such case).
Else there are 3 cases:
1. Convert x[i] to y[j].
2. Skip ith character from x.
3. Skip jth character from y.

If we convert x[i] to y[j], then cost = f(x[i]) XOR f(y[j]) will be added and LCS will decrease by 1. f(x) will return the character value of x.
Note that the minimum cost to convert a character ‘a’ to any character ‘c’ is always f(a) XOR f(c) because f(a) XOR f(c) <= (f(a) XOR f(b) + f(b) XOR f(c)) for all a, b, c.
If you skip ith character from x then i will be decreased by 1, no cost will be added and LCS will remain the same.
If you skip jth character from x then j will be decreased by 1, no cost will be added and LCS will remain the same.

Therefore,

dp[i][j][k] = min(cost + dp[i - 1][j - 1][k - 1],
dp[i - 1][j][k],
dp[i][j - 1][k])
The minimum cost to make the length of their
LCS atleast k is dp[n - 1][m - 1][k]

.

C++

 #include using namespace std; const int N = 30;    // Return Minimum cost to make LCS of length k int solve(char X[], char Y[], int l, int r,                       int k, int dp[][N][N]) {     // If k is 0.     if (!k)         return 0;        // If length become less than 0, return     // big number.     if (l < 0 | r < 0)         return 1e9;        // If state already calculated.     if (dp[l][r][k] != -1)         return dp[l][r][k];        // Finding the cost     int cost = (X[l] - 'a') ^ (Y[r] - 'a');        // Finding minimum cost and saving the state value     return dp[l][r][k] = min({cost +                       solve(X, Y, l - 1, r - 1, k - 1, dp),                              solve(X, Y, l - 1, r, k, dp),                               solve(X, Y, l, r - 1, k, dp)}); }    // Driven Program int main() {     char X[] = "abble";     char Y[] = "pie";     int n = strlen(X);     int m = strlen(Y);     int k = 2;        int dp[N][N][N];     memset(dp, -1, sizeof dp);     int ans = solve(X, Y, n - 1, m - 1, k, dp);        cout << (ans == 1e9 ? -1 : ans) << endl;     return 0; }

Java

 class GFG  {        static int N = 30;        // Return Minimum cost to make LCS of length k     static int solve(char X[], char Y[], int l, int r,                                     int k, int dp[][][])     {         // If k is 0.         if (k == 0)          {             return 0;         }            // If length become less than 0, return         // big number.         if (l < 0 | r < 0)          {             return (int) 1e9;         }            // If state already calculated.         if (dp[l][r][k] != -1)          {             return dp[l][r][k];         }            // Finding the cost         int cost = (X[l] - 'a') ^ (Y[r] - 'a');            // Finding minimum cost and saving the state value         return dp[l][r][k] = Math.min(Math.min(cost +                  solve(X, Y, l - 1, r - 1, k - 1, dp),                 solve(X, Y, l - 1, r, k, dp)),                 solve(X, Y, l, r - 1, k, dp));     }        // Driver code     public static void main(String[] args)      {         char X[] = "abble".toCharArray();         char Y[] = "pie".toCharArray();         int n = X.length;         int m = Y.length;         int k = 2;            int[][][] dp = new int[N][N][N];         for (int i = 0; i < N; i++)          {             for (int j = 0; j < N; j++)             {                 for (int l = 0; l < N; l++)                 {                     dp[i][j][l] = -1;                 }             }         }         int ans = solve(X, Y, n - 1, m - 1, k, dp);            System.out.println(ans == 1e9 ? -1 : ans);     } }    // This code contributed by Rajput-Ji

Python3

 # Python3 program to calculate Minimum cost  # to make Longest Common Subsequence of length k N = 30    # Return Minimum cost to make LCS of length k def solve(X, Y, l, r, k, dp):        # If k is 0     if k == 0:         return 0        # If length become less than 0,      # return big number     if l < 0 or r < 0:         return 1000000000        # If state already calculated     if dp[l][r][k] != -1:         return dp[l][r][k]        # Finding cost     cost = ((ord(X[l]) - ord('a')) ^              (ord(Y[r]) - ord('a')))        dp[l][r][k] = min([cost + solve(X, Y, l - 1,                                            r - 1, k - 1, dp),                               solve(X, Y, l - 1, r, k, dp),                               solve(X, Y, l, r - 1, k, dp)])        return dp[l][r][k]    # Driver Code if __name__ == "__main__":     X = "abble"     Y = "pie"     n = len(X)     m = len(Y)     k = 2     dp = [[[-1] * N for __ in range(N)]                      for ___ in range(N)]     ans = solve(X, Y, n - 1, m - 1, k, dp)        print(-1 if ans == 1000000000 else ans)    # This code is contributed # by vibhu4agarwal

C#

 // C# program to find subarray with // sum closest to 0 using System;        class GFG  {        static int N = 30;        // Return Minimum cost to make LCS of length k     static int solve(char []X, char []Y, int l, int r,                                     int k, int [,,]dp)     {         // If k is 0.         if (k == 0)          {             return 0;         }            // If length become less than 0, return         // big number.         if (l < 0 | r < 0)          {             return (int) 1e9;         }            // If state already calculated.         if (dp[l,r,k] != -1)          {             return dp[l,r,k];         }            // Finding the cost         int cost = (X[l] - 'a') ^ (Y[r] - 'a');            // Finding minimum cost and saving the state value         return dp[l,r,k] = Math.Min(Math.Min(cost +                  solve(X, Y, l - 1, r - 1, k - 1, dp),                 solve(X, Y, l - 1, r, k, dp)),                 solve(X, Y, l, r - 1, k, dp));     }        // Driver code     public static void Main(String[] args)      {         char []X = "abble".ToCharArray();         char []Y = "pie".ToCharArray();         int n = X.Length;         int m = Y.Length;         int k = 2;            int[,,] dp = new int[N, N, N];         for (int i = 0; i < N; i++)          {             for (int j = 0; j < N; j++)             {                 for (int l = 0; l < N; l++)                 {                     dp[i,j,l] = -1;                 }             }         }         int ans = solve(X, Y, n - 1, m - 1, k, dp);            Console.WriteLine(ans == 1e9 ? -1 : ans);     } }    // This code is contributed by Princi Singh

Output:

3

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.