Minimize the sum of product of two arrays with permutations allowed

Given two arrays, A and B, of equal size n, the task is to find the minimum value of A[0] * B[0] + A[1] * B[1] +…+ A[n-1] * B[n-1]. Shuffling of elements of arrays A and B is allowed.

Examples :

Input : A[] = {3, 1, 1} and B[] = {6, 5, 4}.
Output : 23
Minimum value of S = 1*6 + 1*5 + 3*4 = 23.

Input : A[] = { 6, 1, 9, 5, 4 } and B[] = { 3, 4, 8, 2, 4 }
Output : 80.
Minimum value of S = 1*8 + 4*4 + 5*4 + 6*3 + 9*2 = 80.

The idea is to multiply minimum element of one array to maximum element of another array. Algorithm to solve this problem:

  1. Sort both the arrays A and B.
  2. Traverse the array and for each element, multiply A[i] and B[n – i – 1] and add to the total.

Below image is an illustration of the above approach:

Below is the implementation of the above approach:

C/C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to calculate minimum sum of product
// of two arrays.
#include <bits/stdc++.h>
using namespace std;
  
// Returns minimum sum of product of two arrays
// with permutations allowed
int minValue(int A[], int B[], int n)
{
    // Sort A and B so that minimum and maximum
    // value can easily be fetched.
    sort(A, A + n);
    sort(B, B + n);
  
    // Multiplying minimum value of A and maximum
    // value of B
    int result = 0;
    for (int i = 0; i < n; i++)
        result += (A[i] * B[n - i - 1]);
  
    return result;
}
  
// Driven Program
int main()
{
    int A[] = { 3, 1, 1 };
    int B[] = { 6, 5, 4 };
    int n = sizeof(A) / sizeof(A[0]);
    cout << minValue(A, B, n) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// java program to calculate minimum
// sum of product of two arrays.
import java.io.*;
import java.util.*;
  
class GFG {
  
    // Returns minimum sum of product of two arrays
    // with permutations allowed
    static int minValue(int A[], int B[], int n)
    {
        // Sort A and B so that minimum and maximum
        // value can easily be fetched.
        Arrays.sort(A);
        Arrays.sort(B);
  
        // Multiplying minimum value of A
        // and maximum value of B
        int result = 0;
        for (int i = 0; i < n; i++)
            result += (A[i] * B[n - i - 1]);
  
        return result;
    }
  
    // Driven Program
    public static void main(String[] args)
    {
        int A[] = { 3, 1, 1 };
        int B[] = { 6, 5, 4 };
        int n = A.length;
        ;
        System.out.println(minValue(A, B, n));
    }
}
  
// This code is contributed by vt_m

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to calculate minimum sum of product
# of two arrays.
  
# Returns minimum sum of product of two arrays
# with permutations allowed
def minValue(A, B, n):
    # Sort A and B so that minimum and maximum
    # value can easily be fetched.
    sorted(A)
    sorted(B)
   
    # Multiplying minimum value of A and maximum
    # value of B
    result = 0
    for i in range(n):
        result += (A[i] * B[n - i - 1])
   
    return result
   
# Driven Program
A = [3, 1, 1]
B = [6, 5, 4]
n = len(A)
print minValue(A, B, n)
  
# Contributed by: Afzal Ansari

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to calculate minimum
// sum of product of two arrays.
using System;
  
class GFG {
  
    // Returns minimum sum of product 
    // of two arrays with permutations
    // allowed
    static int minValue(int[] a, int[] b,
                                   int n)
    {
          
        // Sort A and B so that minimum 
        // and maximum value can easily
        // be fetched.
        Array.Sort(a);
        Array.Sort(b);
  
        // Multiplying minimum value of 
        // A and maximum value of B
        int result = 0;
          
        for (int i = 0; i < n; i++)
            result += (a[i] * b[n - i - 1]);
  
        return result;
    }
  
    // Driven Program
    public static void Main()
    {
          
        int[] a = { 3, 1, 1 };
        int[] b = { 6, 5, 4 };
        int n = a.Length;
          
        Console.Write(minValue(a, b, n));
    }
}
  
// This code is contributed by nitin mittal.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to calculate minimum 
// sum of product of two arrays.
  
// Returns minimum sum of 
// product of two arrays 
// with permutations allowed
function minValue($A, $B, $n)
{
    // Sort A and B so that minimum 
    // and maximum value can easily
    // be fetched.
    sort($A); sort($A , $n);
    sort($B); sort($B , $n);
  
    // Multiplying minimum value of 
    // A and maximum value of B
    $result = 0;
    for ($i = 0; $i < $n; $i++)
        $result += ($A[$i] * 
                    $B[$n - $i - 1]);
  
    return $result;
}
  
// Driver Code
$A = array( 3, 1, 1 );
$B = array( 6, 5, 4 );
$n = sizeof($A) / sizeof($A[0]);
echo minValue($A, $B, $n) ;
  
// This code is contributed by nitin mittal. 
?>

chevron_right


Output :

23

Time Complexity : O(n log n).

This article is contributed by Anuj Chauhan(anuj0503). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : nitin mittal



Article Tags :
Practice Tags :


2


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.