Given three sorted arrays A, B, and C of not necessarily same sizes. Calculate the minimum absolute difference between the maximum and minimum number of any triplet A[i], B[j], C[k] such that they belong to arrays A, B and C respectively, i.e., minimize (max(A[i], B[j], C[k]) – min(A[i], B[j], C[k]))
Examples:
Input : A : [ 1, 4, 5, 8, 10 ]
B : [ 6, 9, 15 ]
C : [ 2, 3, 6, 6 ]
Output : 1
Explanation: When we select A[i] = 5
B[j] = 6, C[k] = 6, we get the minimum difference
as max(A[i], B[j], C[k]) - min(A[i], B[j], C[k]))
= |6-5| = 1
Input : A = [ 5, 8, 10, 15 ]
B = [ 6, 9, 15, 78, 89 ]
C = [ 2, 3, 6, 6, 8, 8, 10 ]
Output : 1
Explanation: When we select A[i] = 10
b[j] = 9, C[k] = 10.
Start with the largest elements in each of the arrays A, B & C. Maintain a variable to update the answer during each of the steps to be followed.
In every step, the only possible way to decrease the difference is to decrease the maximum element out of the three elements.
So traverse to the next largest element in the array containing the maximum element for this step and update the answer variable.
Repeat this step until the array containing the maximum element ends.
Implementation:
C++
#include<bits/stdc++.h>
using namespace std;
int solve( int A[], int B[], int C[], int i, int j, int k)
{
int min_diff, current_diff, max_term;
min_diff = abs (max(A[i], max(B[j], C[k]))
- min(A[i], min(B[j], C[k])));
while (i != -1 && j != -1 && k != -1)
{
current_diff = abs (max(A[i], max(B[j], C[k]))
- min(A[i], min(B[j], C[k])));
if (current_diff < min_diff)
min_diff = current_diff;
max_term = max(A[i], max(B[j], C[k]));
if (A[i] == max_term)
i -= 1;
else if (B[j] == max_term)
j -= 1;
else
k -= 1;
}
return min_diff;
}
int main()
{
int D[] = { 5, 8, 10, 15 };
int E[] = { 6, 9, 15, 78, 89 };
int F[] = { 2, 3, 6, 6, 8, 8, 10 };
int nD = sizeof (D) / sizeof (D[0]);
int nE = sizeof (E) / sizeof (E[0]);
int nF = sizeof (F) / sizeof (F[0]);
cout << solve(D, E, F, nD-1, nE-1, nF-1);
return 0;
}
|
Java
import java.util.*;
class GFG
{
static int solve( int [] A, int [] B, int [] C)
{
int i, j, k;
i = A.length - 1 ;
j = B.length - 1 ;
k = C.length - 1 ;
int min_diff, current_diff, max_term;
min_diff = Math.abs(Math.max(A[i], Math.max(B[j], C[k]))
- Math.min(A[i], Math.min(B[j], C[k])));
while (i != - 1 && j != - 1 && k != - 1 )
{
current_diff = Math.abs(Math.max(A[i], Math.max(B[j], C[k]))
- Math.min(A[i], Math.min(B[j], C[k])));
if (current_diff < min_diff)
min_diff = current_diff;
max_term = Math.max(A[i], Math.max(B[j], C[k]));
if (A[i] == max_term)
i -= 1 ;
else if (B[j] == max_term)
j -= 1 ;
else
k -= 1 ;
}
return min_diff;
}
public static void main(String []args)
{
int [] D = { 5 , 8 , 10 , 15 };
int [] E = { 6 , 9 , 15 , 78 , 89 };
int [] F = { 2 , 3 , 6 , 6 , 8 , 8 , 10 };
System.out.println(solve(D, E, F));
}
}
|
Python3
def solve(A, B, C):
i = len (A) - 1
j = len (B) - 1
k = len (C) - 1
min_diff = abs ( max (A[i], B[j], C[k]) -
min (A[i], B[j], C[k]))
while i ! = - 1 and j ! = - 1 and k ! = - 1 :
current_diff = abs ( max (A[i], B[j],
C[k]) - min (A[i], B[j], C[k]))
if current_diff < min_diff:
min_diff = current_diff
max_term = max (A[i], B[j], C[k])
if A[i] = = max_term:
i - = 1
elif B[j] = = max_term:
j - = 1
else :
k - = 1
return min_diff
A = [ 5 , 8 , 10 , 15 ]
B = [ 6 , 9 , 15 , 78 , 89 ]
C = [ 2 , 3 , 6 , 6 , 8 , 8 , 10 ]
print (solve(A, B, C))
|
C#
using System;
class GFG
{
static int solve( int [] A, int [] B, int [] C)
{
int i, j, k;
i = A.Length - 1;
j = B.Length - 1;
k = C.Length - 1;
int min_diff, current_diff, max_term;
min_diff = Math.Abs(Math.Max(A[i], Math.Max(B[j], C[k]))
- Math.Min(A[i], Math.Min(B[j], C[k])));
while (i != -1 && j != -1 && k != -1)
{
current_diff = Math.Abs(Math.Max(A[i], Math.Max(B[j], C[k]))
- Math.Min(A[i], Math.Min(B[j], C[k])));
if (current_diff < min_diff)
min_diff = current_diff;
max_term = Math.Max(A[i], Math.Max(B[j], C[k]));
if (A[i] == max_term)
i -= 1;
else if (B[j] == max_term)
j -= 1;
else
k -= 1;
}
return min_diff;
}
public static void Main()
{
int [] D = { 5, 8, 10, 15 };
int [] E = { 6, 9, 15, 78, 89 };
int [] F = { 2, 3, 6, 6, 8, 8, 10 };
Console.WriteLine(solve(D, E, F));
}
}
|
PHP
<?php
function solve( $A , $B , $C ,
$i , $j , $k )
{
$min_diff ;
$current_diff ;
$max_term ;
$min_diff = abs (max( $A [ $i ], max( $B [ $j ], $C [ $k ])) -
min( $A [ $i ], min( $B [ $j ], $C [ $k ])));
while ( $i != -1 &&
$j != -1 && $k != -1)
{
$current_diff = abs (max( $A [ $i ], max( $B [ $j ], $C [ $k ])) -
min( $A [ $i ], min( $B [ $j ], $C [ $k ])));
if ( $current_diff < $min_diff )
$min_diff = $current_diff ;
$max_term = max( $A [ $i ],
max( $B [ $j ], $C [ $k ]));
if ( $A [ $i ] == $max_term )
$i -= 1;
else if ( $B [ $j ] == $max_term )
$j -= 1;
else
$k -= 1;
}
return $min_diff ;
}
$D = array (5, 8, 10, 15);
$E = array (6, 9, 15, 78, 89);
$F = array (2, 3, 6, 6, 8, 8, 10);
$nD = sizeof( $D ) ;
$nE = sizeof( $E ) ;
$nF = sizeof( $F );
echo solve( $D , $E , $F ,
$nD - 1, $nE - 1,
$nF - 1);
?>
|
Javascript
<script>
function solve( A, B,C)
{
let i, j, k;
i = A.length - 1;
j = B.length - 1;
k = C.length - 1;
let min_diff, current_diff, max_term;
min_diff = Math.abs(Math.max(A[i], Math.max(B[j], C[k]))
- Math.min(A[i], Math.min(B[j], C[k])));
while (i != -1 && j != -1 && k != -1)
{
current_diff = Math.abs(Math.max(A[i], Math.max(B[j], C[k]))
- Math.min(A[i], Math.min(B[j], C[k])));
if (current_diff < min_diff)
min_diff = current_diff;
max_term = Math.max(A[i], Math.max(B[j], C[k]));
if (A[i] == max_term)
i -= 1;
else if (B[j] == max_term)
j -= 1;
else
k -= 1;
}
return min_diff;
}
let D = [ 5, 8, 10, 15 ];
let E = [ 6, 9, 15, 78, 89 ];
let F = [ 2, 3, 6, 6, 8, 8, 10 ];
document.write(solve(D, E, F));
</script>
|
Time Complexity : O(n), where n is the combined sizes of all input arrays.
Auxiliary Space: O(1), since no extra space has been taken