Related Articles

# Min operations to reduce N by multiplying by any number or taking square root

• Last Updated : 22 Apr, 2021

Given a number N, the task is to find the minimum value of N by applying below operations any number of times:

Examples:

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12.

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

Input: N = 20
Output: 10
Explanation:
Multiply -> 20 * 5 = 100
sqrt(100) = 10, which is the minimum value obtainable.

Input: N = 5184
Output:
Explanation:
sqrt(5184) = 72.
Multiply -> 72*18 = 1296
sqrt(1296) = 6, which is the minimum value obtainable.

Approach: This problem can be solved using Greedy Approach. Below are the steps:

1. Keep replacing N to sqrt(N) until N is a perfect square.
2. After the above step, iterate from sqrt(N) to 2, and for every, i keep replacing N with N / i if N is divisible by i2.
3. The value of N after the above step will be the minimum possible value.

Below is the implementation of the above approach:

## C++

 `// C++ program for above approach``#include ``using` `namespace` `std;` `// Function to reduce N to its minimum``// possible value by the given operations``void` `minValue(``int` `n)``{``    ``// Keep replacing n until is``    ``// an integer``    ``while` `(``int``(``sqrt``(n)) == ``sqrt``(n)``        ``&& n > 1) {``        ``n = ``sqrt``(n);``    ``}` `    ``// Keep replacing n until n``    ``// is divisible by i * i``    ``for` `(``int` `i = ``sqrt``(n);``        ``i > 1; i--) {` `        ``while` `(n % (i * i) == 0)``            ``n /= i;``    ``}` `    ``// Print the answer``    ``cout << n;``}` `// Driver Code``int` `main()``{``    ``// Given N``    ``int` `N = 20;` `    ``// Function Call``    ``minValue(N);``}`

## Java

 `// Java implementation of the above approach``import` `java.lang.Math;` `class` `GFG{` `// Function to reduce N to its minimum``// possible value by the given operations``static` `void` `minValue(``int` `n)``{``    ` `    ``// Keep replacing n until is``    ``// an integer``    ``while` `((``int``)Math.sqrt(n) ==``                ``Math.sqrt(n) && n > ``1``)``    ``{``        ``n = (``int``)(Math.sqrt(n));``    ``}` `    ``// Keep replacing n until n``    ``// is divisible by i * i``    ``for``(``int` `i = (``int``)(Math.sqrt(n));``            ``i > ``1``; i--)``    ``{``        ``while` `(n % (i * i) == ``0``)``            ``n /= i;``    ``}``    ` `    ``// Print the answer``    ``System.out.println(n);``}` `// Driver code``public` `static` `void` `main(String args[])``{``    ` `    ``// Given N``    ``int` `N = ``20``;``    ` `    ``// Function call``    ``minValue(N);``}``}` `// This code is contributed by vikas_g`

## Python3

 `# Python3 program for the above approach``import` `math` `# Function to reduce N to its minimum``# possible value by the given operations``def` `MinValue(n):``    ` `    ``# Keep replacing n until is``    ``# an integer``    ``while``(``int``(math.sqrt(n)) ``=``=``              ``math.sqrt(n) ``and` `n > ``1``):``        ``n ``=` `math.sqrt(n)``        ` `    ``# Keep replacing n until n``    ``# is divisible by i * i``    ``for` `i ``in` `range``(``int``(math.sqrt(n)), ``1``, ``-``1``):``        ``while` `(n ``%` `(i ``*` `i) ``=``=` `0``):``            ``n ``/``=` `i``            ` `    ``# Print the answer``    ``print``(n)` `# Driver code``n ``=` `20` `# Function call``MinValue(n)` `# This code is contributed by virusbuddah_`

## C#

 `// C# implementation of the approach``using` `System;` `class` `GFG{``    ` `// Function to reduce N to its minimum``// possible value by the given operations``static` `void` `minValue(``int` `n)``{``    ` `    ``// Keep replacing n until is``    ``// an integer``    ``while` `((``int``)Math.Sqrt(n) ==``                ``Math.Sqrt(n) && n > 1)``    ``{``        ``n = (``int``)(Math.Sqrt(n));``    ``}``    ` `    ``// Keep replacing n until n``    ``// is divisible by i * i``    ``for` `(``int` `i = (``int``)(Math.Sqrt(n));``             ``i > 1; i--)``    ``{``        ``while` `(n % (i * i) == 0)``            ``n /= i;``    ``}``    ` `    ``// Print the answer``    ``Console.Write(n);``}` `// Driver code``public` `static` `void` `Main()``{``    ` `    ``// Given N``    ``int` `N = 20;``    ` `    ``// Function call``    ``minValue(N);``}``}` `// This code is contributed by vikas_g`

## Javascript

 ``
Output:
`10`

Time Complexity: O(N)
Auxiliary Space: O(1)

My Personal Notes arrow_drop_up