Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Maximum number of objects that can be created as per given conditions

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given N items of type-1 and M items of type-2. An object can be created from 2 items of type-1 and 1 item of type-2 or 2 items of type-2 and 1 item of type-1 pieces. The task is to find the maximum number of objects that can be created from given number of items of each type.
Examples: 
 

Input: N = 8, M = 7 
Output:
Explanation: 
3 pairs of 2 type-1 and 1 type-2 objects. 
2 pairs of 1 type-1 and 2 type-2 objects.
Input: N = 20, M = 3 
Output:
Explanation: 
3 pairs of 2 type-1 and 1 type-2 objects. 
 

 

Approach: 
Follow the steps below to solve the problem: 
 

  • Create two variables initial and final.
  • initial = Minimum of N, M.
  • final = Divide N + M by 3 ( as an object is made up of 3 components).
  • Minimum of initial and final is maximum number of objects that can be created from given N type-1 and M type-2 items.

Below is the implementation of the above approach: 
 

C++




// C++ program for the above problem
#include <bits/stdc++.h>
using namespace std;
 
// Function for finding
// the maximum number of
// objects from N type-1 and
// M type-2 items
 
int numberOfObjects(int N, int M)
{
    // storing minimum of N and M
    int initial = min(N, M);
 
    // storing maximum number of
    // objects from given items
    int final = (N + M) / 3;
 
    return min(initial, final);
}
 
// Driver Code
int main()
{
    int N = 8;
    int M = 7;
    cout << numberOfObjects(N, M)
         << endl;
    return 0;
}

Java




// Java program for the above problem
class GFG{
     
// Function for finding
// the maximum number of
// objects from N type-1 and
// M type-2 items
static int numberOfObjects(int N, int M)
{
     
    // Storing minimum of N and M
    int initial = Math.min(N, M);
 
    // Storing maximum number of
    // objects from given items
    int last = (N + M) / 3;
 
    return Math.min(initial, last);
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 8;
    int M = 7;
     
    System.out.println(numberOfObjects(N, M));
}
}
 
// This code is contributed by rutvik_56

Python3




# Python3 program for the above problem
 
# Function for finding
# the maximum number of
# objects from N type-1 and
# M type-2 items
def numberOfObjects(N, M):
     
    # Storing minimum of N and M
    initial = min(N, M)
 
    # Storing maximum number of
    # objects from given items
    final = (N + M) // 3
 
    return min(initial, final)
 
# Driver Code
if __name__ == '__main__':
     
    N = 8
    M = 7
     
    print(numberOfObjects(N, M))
 
# This code is contributed by mohit kumar 29

C#




// C# program for the above problem
using System;
class GFG{
      
// Function for finding
// the maximum number of
// objects from N type-1 and
// M type-2 items
static int numberOfObjects(int N, int M)
{
      
    // Storing minimum of N and M
    int initial = Math.Min(N, M);
  
    // Storing maximum number of
    // objects from given items
    int last = (N + M) / 3;
  
    return Math.Min(initial, last);
}
  
// Driver Code
public static void Main(string[] args)
{
    int N = 8;
    int M = 7;
      
    Console.Write(numberOfObjects(N, M));
}
}
  
// This code is contributed by rock_cool

Javascript




<script>
// JavaScript program for the above problem
 
// Function for finding
// the maximum number of
// objects from N type-1 and
// M type-2 items
function numberOfObjects(N, M)
{
 
    // storing minimum of N and M
    let initial = Math.min(N, M);
 
    // storing maximum number of
    // objects from given items
    let final = Math.floor((N + M) / 3);
    return Math.min(initial, final);
}
 
// Driver Code
    let N = 8;
    let M = 7;
    document.write(numberOfObjects(N, M)
        + "<br>");
 
// This code is contributed by Surbhi Tyagi.
</script>

Output: 

5

 

Time Complexity: O(1) 
Auxiliary Space Complexity: O(1)
 


My Personal Notes arrow_drop_up
Last Updated : 17 Mar, 2021
Like Article
Save Article
Similar Reads
Related Tutorials