Skip to content
Related Articles
Maximum length prefix of one string that occurs as subsequence in another
• Difficulty Level : Easy
• Last Updated : 14 Jun, 2021

Given two strings s and t. The task is to find maximum length of some prefix of the string S which occur in string t as subsequence.
Examples :

```Input : s = "digger"
t = "biggerdiagram"
Output : 3
digger
biggerdiagram
Prefix "dig" of s is longest subsequence in t.

Input : s = "geeksforgeeks"
t = "agbcedfeitk"
Output : 4```

A simple solutions is to consider all prefixes on by one and check if current prefix of s[] is a subsequence of t[] or not. Finally return length of the largest prefix.
An efficient solution is based on the fact that to find a prefix of length n, we must first find the prefix of length n – 1 and then look for s[n-1] in t. Similarly, to find a prefix of length n – 1, we must first find the prefix of length n – 2 and then look for s[n – 2] and so on.
Thus, we keep a counter which stores the current length of prefix found. We initialize it with 0 and begin with the first letter of s and keep iterating over t to find the occurrence of the first letter. As soon as we encounter the first letter of s we update the counter and look for second letter. We keep updating the counter and looking for next letter, until either the string s is found or there are no more letters in t.
Below is the implementation of this approach:

## C++

 `// C++ program to find maximum``// length prefix of one string``// occur as subsequence in another``// string.``#include``using` `namespace` `std;` `// Return the maximum length``// prefix which is subsequence.``int` `maxPrefix(``char` `s[], ``char` `t[])``{``    ``int` `count = 0;` `    ``// Iterating string T.``    ``for` `(``int` `i = 0; i < ``strlen``(t); i++)``    ``{``        ``// If end of string S.``        ``if` `(count == ``strlen``(s))``            ``break``;` `        ``// If character match,``        ``// increment counter.``        ``if` `(t[i] == s[count])``            ``count++;``    ``}` `    ``return` `count;``}` `// Driven Code``int` `main()``{``    ``char` `S[] = ``"digger"``;``    ``char` `T[] = ``"biggerdiagram"``;` `    ``cout << maxPrefix(S, T)``         ``<< endl;` `    ``return` `0;``}`

## Java

 `// Java program to find maximum``// length prefix of one string``// occur as subsequence in another``// string.``public` `class` `GFG {    ``    ` `    ``// Return the maximum length``    ``// prefix which is subsequence.``    ``static` `int` `maxPrefix(String s,``                         ``String t)``    ``{``        ``int` `count = ``0``;``    ` `        ``// Iterating string T.``        ``for` `(``int` `i = ``0``; i < t.length(); i++)``        ``{``            ``// If end of string S.``            ``if` `(count == s.length())``                ``break``;``    ` `            ``// If character match, ``            ``// increment counter.``            ``if` `(t.charAt(i) == s.charAt(count))``                ``count++;``        ``}``    ` `        ``return` `count;``    ``}``    ` `    ``// Driver Code``    ``public` `static` `void` `main(String args[])``    ``{``        ``String S = ``"digger"``;``        ``String T = ``"biggerdiagram"``;``    ` `        ``System.out.println(maxPrefix(S, T));``    ``}``}``// This code is contributed by Sumit Ghosh`

## Python 3

 `# Python 3 program to find maximum``# length prefix of one string occur``# as subsequence in another string.`  `# Return the maximum length``# prefix which is subsequence.``def` `maxPrefix(s, t) :``    ``count ``=` `0` `    ``# Iterating string T.``    ``for` `i ``in` `range``(``0``,``len``(t)) :``        ` `        ``# If end of string S.``        ``if` `(count ``=``=` `len``(s)) :``            ``break` `        ``# If character match,``        ``# increment counter.``        ``if` `(t[i] ``=``=` `s[count]) :``            ``count ``=` `count ``+` `1``            `  `    ``return` `count`  `# Driver Code``S ``=` `"digger"``T ``=` `"biggerdiagram"` `print``(maxPrefix(S, T))`  `# This code is contributed``# by Nikita Tiwari.`

## C#

 `// C# program to find maximum``// length prefix of one string``// occur as subsequence in``// another string.``using` `System;` `class` `GFG``{    ``    ` `    ``// Return the maximum length prefix``    ``// which is subsequence.``    ``static` `int` `maxPrefix(String s,``                         ``String t)``    ``{``        ``int` `count = 0;``    ` `        ``// Iterating string T.``        ``for` `(``int` `i = 0; i < t.Length; i++)``        ``{``            ``// If end of string S.``            ``if` `(count == s.Length)``                ``break``;``    ` `            ``// If character match,``            ``// increment counter.``            ``if` `(t[i] == s[count])``                ``count++;``        ``}``    ` `        ``return` `count;``    ``}``    ` `    ``// Driver Code``    ``public` `static` `void` `Main()``    ``{``        ``String S = ``"digger"``;``        ``String T = ``"biggerdiagram"``;``    ` `        ``Console.Write(maxPrefix(S, T));``    ``}``}` `// This code is contributed by nitin mittal`

## PHP

 ``

## Javascript

 ``

Output:

`3`

This article is contributed by Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes

My Personal Notes arrow_drop_up