Longest subsequence such that difference between adjacents is one

Given an array of n size, the task is to find the longest subsequence such that difference between adjacents is one.

Examples:

Input :  arr[] = {10, 9, 4, 5, 4, 8, 6}
Output :  3
As longest subsequences with difference 1 are, "10, 9, 8", 
"4, 5, 4" and "4, 5, 6"

Input :  arr[] = {1, 2, 3, 2, 3, 7, 2, 1}
Output :  7
As longest consecutive sequence is "1, 2, 3, 2, 3, 2, 1"

This problem is based upon the concept of Longest Increasing Subsequence Problem.

Let arr[0..n-1] be the input array and 
dp[i] be the length of the longest subsequence (with
differences one) ending at index i such that arr[i] 
is the last element of the subsequence.

Then, dp[i] can be recursively written as:
dp[i] = 1 + max(dp[j]) where 0 < j < i and 
       [arr[j] = arr[i] -1  or arr[j] = arr[i] + 1]
dp[i] = 1, if no such j exists.

To find the result for a given array, we need 
to return max(dp[i]) where 0 < i < n.

Following is a Dynamic Programming based implementation. It follows the recursive structure discussed above.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find the longest subsequence such
// the difference between adjacent elements of the
// subsequence is one.
#include<bits/stdc++.h>
using namespace std;
  
// Function to find the length of longest subsequence
int longestSubseqWithDiffOne(int arr[], int n)
{
    // Initialize the dp[] array with 1 as a
    // single element will be of 1 length
    int dp[n];
    for (int i = 0; i< n; i++)
        dp[i] = 1;
  
    // Start traversing the given array
    for (int i=1; i<n; i++)
    {
        // Compare with all the previous elements
        for (int j=0; j<i; j++)
        {
            // If the element is consecutive then
            // consider this subsequence and update
            // dp[i] if required.
            if ((arr[i] == arr[j]+1) ||
                (arr[i] == arr[j]-1))
  
                dp[i] = max(dp[i], dp[j]+1);
        }
    }
  
    // Longest length will be the maximum value
    // of dp array.
    int result = 1;
    for (int i = 0 ; i < n ; i++)
        if (result < dp[i])
            result = dp[i];
    return result;
}
  
// Driver code
int main()
{
    // Longest subsequence with one difference is
    // {1, 2, 3, 4, 3, 2}
    int arr[] = {1, 2, 3, 4, 5, 3, 2};
    int n = sizeof(arr)/sizeof(arr[0]);
    cout << longestSubseqWithDiffOne(arr, n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the longest subsequence
// such that the difference between adjacent
// elements of the subsequence is one.
import java.io.*;
  
class GFG {
      
    // Function to find the length of longest 
    // subsequence
    static int longestSubseqWithDiffOne(int arr[], 
                                           int n)
    {
        // Initialize the dp[] array with 1 as a
        // single element will be of 1 length
        int dp[] = new int[n];
        for (int i = 0; i< n; i++)
            dp[i] = 1;
  
        // Start traversing the given array
        for (int i = 1; i < n; i++)
        {
            // Compare with all the previous
            // elements
            for (int j = 0; j < i; j++)
            {
                // If the element is consecutive 
                // then consider this subsequence
                // and update dp[i] if required.
                if ((arr[i] == arr[j] + 1) ||
                    (arr[i] == arr[j] - 1))
  
                dp[i] = Math.max(dp[i], dp[j]+1);
            }
        }
  
        // Longest length will be the maximum 
        // value of dp array.
        int result = 1;
        for (int i = 0 ; i < n ; i++)
            if (result < dp[i])
                result = dp[i];
        return result;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        // Longest subsequence with one 
        // difference is
        // {1, 2, 3, 4, 3, 2}
        int arr[] = {1, 2, 3, 4, 5, 3, 2};
        int n = arr.length;
        System.out.println(longestSubseqWithDiffOne(
                                           arr, n));
    }
}
  
// This code is contributed by Prerna Saini

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Function to find the length of longest subsequence
def longestSubseqWithDiffOne(arr, n):
    # Initialize the dp[] array with 1 as a
    # single element will be of 1 length
    dp = [1 for i in range(n)]
  
    # Start traversing the given array
    for i in range(n):
        # Compare with all the previous elements
        for j in range(i):
            # If the element is consecutive then
            # consider this subsequence and update
            # dp[i] if required.
            if ((arr[i] == arr[j]+1) or (arr[i] == arr[j]-1)):
                dp[i] = max(dp[i], dp[j]+1)
  
    # Longest length will be the maximum value
    # of dp array.
    result = 1   
    for i in range(n):
        if (result < dp[i]):
            result = dp[i]
             
    return result
  
# Driver code
arr = [1, 2, 3, 4, 5, 3, 2]
# Longest subsequence with one difference is
# {1, 2, 3, 4, 3, 2}
n = len(arr)
print longestSubseqWithDiffOne(arr, n)
  
# This code is contributed by Afzal Ansari

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the longest subsequence
// such that the difference between adjacent
// elements of the subsequence is one.
using System;
  
class GFG {
      
    // Function to find the length of longest 
    // subsequence
    static int longestSubseqWithDiffOne(int []arr, 
                                           int n)
    {
          
        // Initialize the dp[] array with 1 as a
        // single element will be of 1 length
        int []dp = new int[n];
          
        for (int i = 0; i< n; i++)
            dp[i] = 1;
  
        // Start traversing the given array
        for (int i = 1; i < n; i++)
        {
              
            // Compare with all the previous
            // elements
            for (int j = 0; j < i; j++)
            {
                // If the element is consecutive 
                // then consider this subsequence
                // and update dp[i] if required.
                if ((arr[i] == arr[j] + 1) ||
                         (arr[i] == arr[j] - 1))
  
                dp[i] = Math.Max(dp[i], dp[j]+1);
            }
        }
  
        // Longest length will be the maximum 
        // value of dp array.
        int result = 1;
        for (int i = 0 ; i < n ; i++)
            if (result < dp[i])
                result = dp[i];
                  
        return result;
    }
  
    // Driver code
    public static void Main()
    {
          
        // Longest subsequence with one 
        // difference is
        // {1, 2, 3, 4, 3, 2}
        int []arr = {1, 2, 3, 4, 5, 3, 2};
        int n = arr.Length;
          
        Console.Write(
            longestSubseqWithDiffOne(arr, n));
    }
}
  
// This code is contributed by nitin mittal.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find the longest
// subsequence such the difference 
// between adjacent elements of the
// subsequence is one.
  
// Function to find the length of
// longest subsequence
function longestSubseqWithDiffOne($arr, $n)
{
      
    // Initialize the dp[] 
    // array with 1 as a
    // single element will 
    // be of 1 length
    $dp[$n] = 0;
      
    for($i = 0; $i< $n; $i++)
        $dp[$i] = 1;
  
    // Start traversing the
    // given array
    for($i = 1; $i < $n; $i++)
    {
          
        // Compare with all the 
        // previous elements
        for($j = 0; $j < $i; $j++)
        {
              
            // If the element is
            // consecutive then
            // consider this 
            // subsequence and 
            // update dp[i] if 
            // required.
            if (($arr[$i] == $arr[$j] + 1) ||
                ($arr[$i] == $arr[$j] - 1))
  
                $dp[$i] = max($dp[$i],
                         $dp[$j] + 1);
        }
    }
  
    // Longest length will be 
    // the maximum value
    // of dp array.
    $result = 1;
    for($i = 0 ; $i < $n ; $i++)
        if ($result < $dp[$i])
            $result = $dp[$i];
    return $result;
}
  
    // Driver code
    // Longest subsequence with
    // one difference is
    // {1, 2, 3, 4, 3, 2}
    $arr = array(1, 2, 3, 4, 5, 3, 2);
    $n = sizeof($arr);
    echo longestSubseqWithDiffOne($arr, $n);
      
// This code is contributed by nitin mittal. 
?>

chevron_right



Output:



6

Time Complexity: O(n2)
Auxiliary Space: O(n)

This article is contributed by Sahil Chhabra (KILLER). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : nitin mittal



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.