Given a square matrix, the task is that we turn it by 180 degrees in an anti-clockwise direction without using any extra space.Â
Examples :Â
Input : 1 2 3
4 5 6
7 8 9
Output : 9 8 7
6 5 4
3 2 1
Input : 1 2 3 4
5 6 7 8
9 0 1 2
3 4 5 6
Output : 6 5 4 3
2 1 0 9
8 7 6 5
4 3 2 1
Method: 1 (Only prints rotated matrix)Â
The solution of this problem is that to rotate a matrix by 180 degrees we can easily follow that stepÂ
Matrix = a00 a01 a02
a10 a11 a12
a20 a21 a22
when we rotate it by 90 degree
then matrix is
Matrix = a02 a12 a22
a01 a11 a21
a00 a10 a20
when we rotate it by again 90
degree then matrix is
Matrix = a22 a21 a20
a12 a11 a10
a02 a01 a00
From the above illustration, we get that simply to rotate the matrix by 180 degrees then we will have to print the given matrix in a reverse manner.
Java
import java.util.*;
class GFG {
static int N = 3 ;
static void rotateMatrix( int mat[][])
{
for ( int i = N - 1 ; i >= 0 ; i--) {
for ( int j = N - 1 ; j >= 0 ; j--)
System.out.print(mat[i][j] + " " );
System.out.println();
}
}
public static void main(String[] args)
{
int [][] mat = { { 1 , 2 , 3 },
{ 4 , 5 , 6 },
{ 7 , 8 , 9 } };
rotateMatrix(mat);
}
}
|
Output :Â
9 8 7
6 5 4
3 2 1
Time complexity: O(N*N)Â
Auxiliary Space: O(1)
Method : 2(In-place rotation)Â
There are four steps :Â
1- Find transpose of a matrix.Â
2- Reverse columns of the transpose.Â
3- Find transpose of a matrix.Â
4- Reverse columns of the transpose
Let the given matrix be
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
First we find transpose.
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
Then we reverse elements of every column.
4 8 12 16
3 7 11 15
2 6 10 14
1 5 9 13
then transpose again
4 3 2 1
8 7 6 5
12 11 10 9
16 15 14 13
Then we reverse elements of every column again
16 15 14 13
12 11 10 9
8 7 6 5
4 3 2 1
Java
import java.util.*;
class GFG {
static int R = 4 , C = 4 , t = 0 ;
static void reverseColumns( int arr[][])
{
for ( int i = 0 ; i < C; i++) {
for ( int j = 0 , k = C - 1 ; j < k; j++, k--) {
t = arr[j][i];
arr[j][i] = arr[k][i];
arr[k][i] = t;
}
}
}
static void transpose( int arr[][])
{
for ( int i = 0 ; i < R; i++) {
for ( int j = i; j < C; j++) {
t = arr[i][j];
arr[i][j] = arr[j][i];
arr[j][i] = t;
}
}
}
static void printMatrix( int arr[][])
{
for ( int i = 0 ; i < R; i++) {
for ( int j = 0 ; j < C; j++)
System.out.print(arr[i][j] + " " );
System.out.println();
}
}
static void rotate180( int arr[][])
{
transpose(arr);
reverseColumns(arr);
transpose(arr);
reverseColumns(arr);
}
public static void main(String[] args)
{
int [][] arr = { { 1 , 2 , 3 , 4 },
{ 5 , 6 , 7 , 8 },
{ 9 , 10 , 11 , 12 },
{ 13 , 14 , 15 , 16 } };
rotate180(arr);
printMatrix(arr);
}
}
|
Output :Â
16 15 14 13
12 11 10 9
8 7 6 5
4 3 2 1
Time complexity : O(R*C)Â
Auxiliary Space : O(1)
In the code above, the transpose of the matrix has to be found twice, and also, columns have to be reversed twice.Â
So, we can have a better solution.
Method : 3 (Position swapping)
Here, we swap the values in the respective positions.Â
Java
public class GFG {
/**
* Reverse Row at specified index in the matrix
* @param data matrix
* @param index row index
*/
private static void reverseRow( int [][] data, int index) {
int cols = data[index].length;
for ( int i = 0 ; i < cols / 2 ; i++) {
int temp = data[index][i];
data[index][i] = data[index][cols - i - 1 ];
data[index][cols - i - 1 ] = temp;
}
}
/**
* Print Matrix data
* @param data matrix
*/
private static void printMatrix( int [][] data) {
for ( int i = 0 ; i < data.length; i++) {
for ( int j = 0 ; j < data[i].length; j++) {
System.out.print(data[i][j] + " " );
}
System.out.println( "" );
}
}
/**
* Rotate Matrix by 180 degrees
* @param data matrix
*/
private static void rotateMatrix180( int [][] data) {
int rows = data.length;
int cols = data[ 0 ].length;
if (rows % 2 != 0 ) {
reverseRow(data, data.length / 2 );
}
for ( int i = 0 ; i <= (rows/ 2 ) - 1 ; i++) {
for ( int j = 0 ; j < cols; j++) {
int temp = data[i][j];
data[i][j] = data[rows - i - 1 ][cols - j - 1 ];
data[rows - i - 1 ][cols - j - 1 ] = temp;
}
}
}
public static void main(String[] args) {
int [][] data = {
{ 1 , 2 , 3 , 4 , 5 },
{ 6 , 7 , 8 , 9 , 10 },
{ 11 , 12 , 13 , 14 , 15 },
{ 16 , 17 , 18 , 19 , 20 },
{ 21 , 22 , 23 , 24 , 25 }
};
rotateMatrix180(data);
printMatrix(data);
}
}
|
Output :Â
25 24 23 22 21
20 19 18 17 16
15 14 13 12 11
10 9 8 7 6
5 4 3 2 1
Time complexity : O(R*C)Â
Auxiliary Space : O(1)
Â
Please refer complete article on Rotate a Matrix by 180 degree for more details!