Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

How to change dataframe column names in PySpark ?

  • Last Updated : 18 Nov, 2021

In this article, we are going to see how to change the column names in the pyspark data frame. 

Let’s create a Dataframe for demonstration:

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course


# Importing necessary libraries
from pyspark.sql import SparkSession
# Create a spark session
spark = SparkSession.builder.appName('pyspark - example join').getOrCreate()
# Create data in dataframe
data = [(('Ram'), '1991-04-01', 'M', 3000),
        (('Mike'), '2000-05-19', 'M', 4000),
        (('Rohini'), '1978-09-05', 'M', 4000),
        (('Maria'), '1967-12-01', 'F', 4000),
        (('Jenis'), '1980-02-17', 'F', 1200)]
# Column names in dataframe
columns = ["Name", "DOB", "Gender", "salary"]
# Create the spark dataframe
df = spark.createDataFrame(data=data,
# Print the dataframe

Output :

Method 1: Using withColumnRenamed()

We will use of withColumnRenamed() method to change the column names of pyspark data frame.

Syntax: DataFrame.withColumnRenamed(existing, new)


  • existingstr: Existing column name of data frame to rename.
  • newstr: New column name.
  • Returns type: Returns a data frame by renaming an existing column.

Example 1: Renaming the single column in the data frame

Here we’re Renaming the column name ‘DOB’ to ‘DateOfBirth’.


# Rename the column name from DOB to DateOfBirth
# Print the dataframe

Output :

Example 2: Renaming multiple column names


# Rename the column name 'Gender' to 'Sex'
# Then for the returning dataframe
# again rename the 'salary' to 'Amount'

Output :

Method 2: Using selectExpr()

Renaming the column names using selectExpr() method

Syntax : DataFrame.selectExpr(expr)

Parameters :

expr : It’s an SQL expression.

Here we are renaming Name as a name.


# Select the 'Name' as 'name'
# Select remaining with their original name
data = df.selectExpr("Name as name","DOB","Gender","salary")
# Print the dataframe

Output :

Method 3: Using select() method


Parameters :

cols: List of column names as strings.

Return type: Selects the cols in the dataframe and returns a new DataFrame.

Here we Rename the column name ‘salary’ to ‘Amount’


# Import col method from pyspark.sql.functions
from pyspark.sql.functions import col
# Select the 'salary' as 'Amount' using aliasing
# Select remainging with their original name
data ="Name"),col("DOB"),
# Print the dataframe

Output :

Method 4: Using toDF()

This function returns a new DataFrame that with new specified column names.

Syntax: toDF(*col)

Where, col is a new column name

In this example, we will create an order list of new column names and pass it into toDF function


Data_list = ["Emp Name","Date of Birth",
             " Gender-m/f","Paid salary"]
new_df = df.toDF(*Data_list)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!