Open In App
Related Articles

GATE | GATE CS 2011 | Question 33

Improve Article
Improve
Save Article
Save
Like Article
Like

Consider a finite sequence of random values X = { x1, x2,…, xn}. Let μx be the mean and σx be the standard deviation of X. Let another finite sequence Y of equal length be derived from this as yi = a*xi + b, where a and b are positive constants. Let μy be the mean and σy be the standard deviation of this sequence. Which one of the following statements is INCORRECT?
(A) Index position of mode of X in X is the same as the index position of mode of Y in Y.
(B) Index position of median of X in X is the same as the index position of median of Y in Y.
(C) μy = aμx+b
(D) σy = aσx+b


Answer: (D)

Explanation: Adding a constant like b shift the distribution while multiplying to a constant like a stretch the distribution along median
gate2011A29

Mode is the most frequent data of the distribution, so the index position of the mode will not change. From the above graph it is clear that index position of the median will also not change. Now for the mean
 Y_{i} = a X_{i} + b \newline \newline \sum Y_{i}  = \sum(aX-{i} + b) \newline  \sum Y_{i} = a(\sum X_{i}) + nb \newline (\sum Y_{i})/n = a(\sum X_{i})/n + b \newline \mu _{y} = a\mu_{x} + b

And for the standard deviation
 \newline \newline \sigma _{y} = \sqrt{\frac{1}{n} \sum (\mu_{y} - Y_{i})^{2}} \newline \newline \sigma _{y} = \sqrt{\frac{1}{n} \sum (a\mu_{x} + b - Y_{i})^{2}} \newline \sigma _{y} = \sqrt{\frac{1}{n} \sum (a\mu_{x} + b - aX_{i} - b)^{2}} \newline \newline \sigma _{y} = \sqrt{\frac{1}{n} \sum (a\mu_{x} - aX_{i} )^{2}} \newline \newline \sigma _{y} = a\sqrt{\frac{1}{n} \sum (\mu_{x} - X_{i} )^{2}} \newline \newline \sigma _{y} = a\sigma_{x}

 

 


Quiz of this Question

Level Up Your GATE Prep!
Embark on a transformative journey towards GATE success by choosing Data Science & AI as your second paper choice with our specialized course. If you find yourself lost in the vast landscape of the GATE syllabus, our program is the compass you need.

Last Updated : 01 Feb, 2019
Like Article
Save Article
Previous
Next
Similar Reads