GATE | GATE-CS-2007 | Question 4

Let G be the non-planar graph with the minimum possible number of edges. Then G has
(A) 9 edges and 5 vertices
(B) 9 edges and 6 vertices
(C) 10 edges and 5 vertices
(D) 10 edges and 6 vertices


Answer: (B)

Explanation: According to Kuratowski’s Theorem, a graph is planar if and only if it does not contain any subdivisions of the graphs K5 or K3,3.

That means K5 and K3,3 are minimum non-planar graphs. These graphs have 5 vertices with 10 edges in K5 and 6 vertices with 9 edges in K3,3 graph.
So, graph K5 has minimum vertices and maximum edges than K3,3.

So, option (B) is correct.

Quiz of this Question



My Personal Notes arrow_drop_up


Article Tags :

Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.