Find the sum of the first half and second half elements of an array
Given an array arr of size N. The task is to find the sum of the first half (N/2) elements and second half elements (N – N/2) of an array.
Examples:
Input : arr[] = {20, 30, 60, 10, 25, 15, 40}
Output : 110, 90
Sum of first N/2 elements 20 + 30 + 60 is 110
Input : arr[] = {50, 35, 20, 15}
Output : 85, 35
Approach:
Initialize SumFirst and SumSecond as 0. Traverse the given array and add elements in SumFirst if the current index is less than N/2 otherwise add in SumSecond.
Below is the implementation of the above approach:
C++
// C++ program to find the sum of the first half // elements and second half elements of an array #include <bits/stdc++.h> using namespace std; // Function to find the sum of the first half // elements and second half elements of an array void sum_of_elements( int arr[], int n) { int sumfirst = 0, sumsecond = 0; for ( int i = 0; i < n; i++) { // Add elements in first half sum if (i < n / 2) sumfirst += arr[i]; // Add elements in the second half sum else sumsecond += arr[i]; } cout << "Sum of first half elements is " << sumfirst << endl; cout << "Sum of second half elements is " << sumsecond << endl; } // Driver Code int main() { int arr[] = { 20, 30, 60, 10, 25, 15, 40 }; int n = sizeof (arr) / sizeof (arr[0]); // Function call sum_of_elements(arr, n); return 0; } |
Java
// Java program to count pairs // whose sum divisible by 'K' import java.util.*; class GFG { public static void sum_of_elements( int []arr, int n) { int sumfirst = 0 , sumsecond = 0 ; for ( int i = 0 ; i < n; i++) { // Add elements in first half sum if (i < n / 2 ) { sumfirst += arr[i]; } // Add elements in the second half sum else { sumsecond += arr[i]; } } System.out.println( "Sum of first half elements is " + sumfirst); System.out.println( "Sum of second half elements is " + sumsecond); } // Driver code public static void main(String[] args) { int []arr = { 20 , 30 , 60 , 10 , 25 , 15 , 40 }; int n = arr.length; // Function call sum_of_elements(arr, n); } } // This code is contributed by Princi Singh |
Python3
# Python3 program to find the sum of # the first half elements and # second half elements of an array # Function to find the sum of # the first half elements and # second half elements of an array def sum_of_elements(arr, n): sumfirst = 0 ; sumsecond = 0 ; for i in range (n): # Add elements in first half sum if (i < n / / 2 ): sumfirst + = arr[i]; # Add elements in the second half sum else : sumsecond + = arr[i]; print ( "Sum of first half elements is" , sumfirst, end = "\n" ); print ( "Sum of second half elements is" , sumsecond, end = "\n" ); # Driver Code arr = [ 20 , 30 , 60 , 10 , 25 , 15 , 40 ]; n = len (arr); # Function call sum_of_elements(arr, n); # This code is contributed # by Akanksha Rai |
C#
// C# program to count pairs // whose sum divisible by 'K' using System; class GFG { public static void sum_of_elements( int []arr, int n) { int sumfirst = 0, sumsecond = 0; for ( int i = 0; i < n; i++) { // Add elements in first half sum if (i < n / 2) { sumfirst += arr[i]; } // Add elements in the second half sum else { sumsecond += arr[i]; } } Console.WriteLine( "Sum of first half elements is " + sumfirst); Console.WriteLine( "Sum of second half elements is " + sumsecond); } // Driver code static public void Main () { int []arr = { 20, 30, 60, 10, 25, 15, 40 }; int n = arr.Length; // Function call sum_of_elements(arr, n); } } // This code is contributed by nidhiva |
Javascript
<script> // Javascript program to count pairs // whose sum divisible by 'K' function sum_of_elements(arr , n) { var sumfirst = 0, sumsecond = 0; for (i = 0; i < n; i++) { // Add elements in first half sum if (i < parseInt(n / 2)) { sumfirst += arr[i]; } // Add elements in the second half sum else { sumsecond += arr[i]; } } document.write( "Sum of first half elements is " + sumfirst+ "<br/>" ); document.write( "Sum of second half elements is " + sumsecond+ "<br/>" ); } // Driver code var arr = [ 20, 30, 60, 10, 25, 15, 40 ]; var n = arr.length; // Function call sum_of_elements(arr, n); // This code contributed by umadevi9616 </script> |
Output:
Sum of first half elements is 110 Sum of second half elements is 90
Time complexity: O(N), as we are using a loop to traverse the array.
Auxiliary Space: O(1), as we are not using any extra space.
Please Login to comment...