Skip to content
Related Articles

Related Articles

Improve Article

Find the longest sub-string which is prefix, suffix and also present inside the string

  • Difficulty Level : Hard
  • Last Updated : 14 May, 2021

Given string str. The task is to find the longest sub-string which is a prefix, a suffix, and a sub-string of the given string, str. If no such string exists then print -1.
Examples: 
 

Input: str = “fixprefixsuffix” 
Output: fix 
“fix” is a prefix, suffix and present inside in the string too.
Input: str = “aaaa” 
“aa” is a prefix, suffix and present inside the string. 
 

 

Approach: Let us calculate the longest prefix suffix for all prefixes of string. longest prefix suffix lps[i] is maximal length of prefix that also is suffix of substring [0…i]. More about the longest prefix suffix you can see in a description of kmp algorithm.
The first possible answer is a prefix of length lps[n-1]. If lps[n-1] = 0, there is no solution. For checking the first possible answer you should iterate over lps[i]. If at least one of them equal to lps[n-1] (but not n-1th, of course) – you found the answer. The second possible answer is a prefix of length lps[lps[n-1]-1]. If lps[lps[n-1]-1] = 0, you also have no solution. Otherwise, you can be sure that the answer already found. This substring is a prefix and a suffix of our string. Also, it is a suffix of a prefix with length lps[n-1] that places inside of all strings. This solution works in O(n).
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find longest prefix suffix
vector<int> compute_lps(string s)
{
    int n = s.size();
 
    // To store longest prefix suffix
    vector<int> lps(n);
 
    // Length of the previous
    // longest prefix suffix
    int len = 0;
 
    // lps[0] is always 0
    lps[0] = 0;
    int i = 1;
 
    // Loop calculates lps[i] for i = 1 to n - 1
    while (i < n) {
        if (s[i] == s[len]) {
            len++;
            lps[i] = len;
            i++;
        }
 
        // (pat[i] != pat[len])
        else {
            if (len != 0)
                len = lps[len - 1];
            // Also, note that we do not increment
            // i here
 
            // If len = 0
            else {
                lps[i] = 0;
                i++;
            }
        }
    }
 
    return lps;
}
 
// Function to find the longest substring
// which is prefix as well as a
// sub-string of s[1...n-2]
void Longestsubstring(string s)
{
    // Find longest prefix suffix
    vector<int> lps = compute_lps(s);
    int n = s.size();
 
    // If lps of n-1 is zero
    if (lps[n - 1] == 0) {
        cout << -1;
        return;
    }
 
    for (int i = 0; i < n - 1; i++) {
 
        // At any position lps[i] equals to lps[n - 1]
        if (lps[i] == lps[n - 1]) {
            cout << s.substr(0, lps[i]);
            return;
        }
    }
 
    // If answer is not possible
    if (lps[lps[n - 1] - 1] == 0)
        cout << -1;
    else
        cout << s.substr(0, lps[lps[n - 1] - 1]);
}
 
// Driver code
int main()
{
    string s = "fixprefixsuffix";
 
    // function call
    Longestsubstring(s);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
    // Function to find longest prefix suffix
    static int [] compute_lps(String s)
    {
        int n = s.length();
     
        // To store longest prefix suffix
        int [] lps = new int [n];
     
        // Length of the previous
        // longest prefix suffix
        int len = 0;
     
        // lps[0] is always 0
        lps[0] = 0;
        int i = 1;
     
        // Loop calculates lps[i] for i = 1 to n - 1
        while (i < n)
        {
            if (s.charAt(i) == s.charAt(len))
            {
                len++;
                lps[i] = len;
                i++;
            }
     
            // (pat[i] != pat[len])
            else
            {
                if (len != 0)
                    len = lps[len - 1];
                // Also, note that we do not increment
                // i here
     
                // If len = 0
                else
                {
                    lps[i] = 0;
                    i++;
                }
            }
        }
     
        return lps;
    }
     
    // Function to find the longest substring
    // which is prefix as well as a
    // sub-string of s[1...n-2]
    static void Longestsubstring(String s)
    {
        // Find longest prefix suffix
        int [] lps = compute_lps(s);
        int n = s.length();
     
        // If lps of n-1 is zero
        if (lps[n - 1] == 0)
        {
            System.out.println(-1);
            return;
        }
     
        for (int i = 0; i < n - 1; i++)
        {
     
            // At any position lps[i] equals to lps[n - 1]
            if (lps[i] == lps[n - 1])
            {
                System.out.println(s.substring(0, lps[i]));
                return;
            }
        }
     
        // If answer is not possible
        if (lps[lps[n - 1] - 1] == 0)
            System.out.println(-1);
        else
            System.out.println(s.substring(0, lps[lps[n - 1] - 1]));
    }
     
    // Driver code
    public static void main (String [] args)
    {
        String s = "fixprefixsuffix";
     
        // function call
        Longestsubstring(s);
     
    }
}
 
// This code is contributed by ihritik

Python3




# Python3 implementation of the approach
 
# Function to find longest prefix suffix
def compute_lps(s):
 
    n = len(s)
 
    # To store longest prefix suffix
    lps = [0 for i in range(n)]
 
    # Length of the previous
    # longest prefix suffix
    Len = 0
 
    # lps[0] is always 0
    lps[0] = 0
    i = 1
 
    # Loop calculates lps[i] for i = 1 to n - 1
    while (i < n):
        if (s[i] == s[Len]):
            Len += 1
            lps[i] = Len
            i += 1
 
        # (pat[i] != pat[Len])
        else:
            if (Len != 0):
                Len = lps[Len - 1]
            # Also, note that we do not increment
            # i here
 
            # If Len = 0
            else:
                lps[i] = 0
                i += 1
             
 
    return lps
 
# Function to find the longest substring
# which is prefix as well as a
# sub-of s[1...n-2]
def Longestsubstring(s):
 
    # Find longest prefix suffix
    lps = compute_lps(s)
    n = len(s)
 
    # If lps of n-1 is zero
    if (lps[n - 1] == 0):
        print(-1)
        exit()
     
    for i in range(0,n - 1):
 
        # At any position lps[i] equals to lps[n - 1]
        if (lps[i] == lps[n - 1]):
            print(s[0:lps[i]])
            exit()
 
    # If answer is not possible
    if (lps[lps[n - 1] - 1] == 0):
        print(-1)
    else:
        print(s[0:lps[lps[n - 1] - 1]])
 
# Driver code
 
s = "fixprefixsuffix"
 
# function call
Longestsubstring(s)
 
# This code is contributed by mohit kumar

C#




// C# implementation of the approach
using System;
 
class GFG
{
    // Function to find longest prefix suffix
    static int [] compute_lps(string s)
    {
        int n = s.Length;
     
        // To store longest prefix suffix
        int [] lps = new int [n];
     
        // Length of the previous
        // longest prefix suffix
        int len = 0;
     
        // lps[0] is always 0
        lps[0] = 0;
        int i = 1;
     
        // Loop calculates lps[i] for i = 1 to n - 1
        while (i < n)
        {
            if (s[i] == s[len])
            {
                len++;
                lps[i] = len;
                i++;
            }
     
            // (pat[i] != pat[len])
            else
            {
                if (len != 0)
                    len = lps[len - 1];
                // Also, note that we do not increment
                // i here
     
                // If len = 0
                else
                {
                    lps[i] = 0;
                    i++;
                }
            }
        }
     
        return lps;
    }
     
    // Function to find the longest substring
    // which is prefix as well as a
    // sub-string of s[1...n-2]
    static void Longestsubstring(string s)
    {
        // Find longest prefix suffix
        int [] lps = compute_lps(s);
        int n = s.Length;
     
        // If lps of n-1 is zero
        if (lps[n - 1] == 0)
        {
            Console.WriteLine(-1);
            return;
        }
     
        for (int i = 0; i < n - 1; i++)
        {
     
            // At any position lps[i] equals to lps[n - 1]
            if (lps[i] == lps[n - 1])
            {
                Console.WriteLine(s.Substring(0, lps[i]));
                return;
            }
        }
     
        // If answer is not possible
        if (lps[lps[n - 1] - 1] == 0)
            Console.WriteLine(-1);
        else
            Console.WriteLine(s.Substring(0, lps[lps[n - 1] - 1]));
    }
     
    // Driver code
    public static void Main ()
    {
        string s = "fixprefixsuffix";
     
        // function call
        Longestsubstring(s);
     
    }
}
 
// This code is contributed by ihritik

PHP




<?php
// Python3 implementation of the approach
 
// Function to find longest prefix suffix
function compute_lps($s)
{
    $n = strlen($s);
 
    // To store longest prefix suffix
    $lps = array();
 
    // Length of the previous
    // longest prefix suffix
    $len = 0;
 
    // lps[0] is always 0
    $lps[0] = 0;
    $i = 1;
 
    // Loop calculates lps[i] for i = 1 to n - 1
    while ($i < $n)
    {
        if ($s[$i] == $s[$len])
        {
            $len++;
            $lps[$i] = $len;
            $i++;
        }
 
        // (pat[i] != pat[len])
        else
        {
            if ($len != 0)
                $len = $lps[$len - 1];
                 
            // Also, note that we do not increment
            // i here
 
            // If len = 0
            else
            {
                $lps[$i] = 0;
                $i++;
            }
        }
    }
 
    return $lps;
}
 
// Function to find the longest substring
// which is prefix as well as a
// sub-string of s[1...n-2]
function Longestsubstring($s)
{
    // Find longest prefix suffix
    $lps = compute_lps($s);
    $n = strlen($s);
 
    // If lps of n-1 is zero
    if ($lps[$n - 1] == 0)
    {
        echo -1;
        return;
    }
 
    for ($i = 0; $i < $n - 1; $i++)
    {
 
        // At any position lps[i] equals to lps[n - 1]
        if ($lps[$i] == $lps[$n - 1])
        {
            echo substr($s, 0, $lps[$i]);
            return;
        }
    }
 
    // If answer is not possible
    if ($lps[$lps[$n - 1] - 1] == 0)
        echo -1;
    else
        echo substr($s, 0, $lps[$lps[$n - 1] - 1]);
}
 
// Driver code
$s = "fixprefixsuffix";
 
// function call
Longestsubstring($s);
 
// This code is contributed by Ryuga
?>

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to find longest prefix suffix
function compute_lps(s)
{
    var n = s.length;
 
    // To store longest prefix suffix
    var lps = Array(n);
 
    // Length of the previous
    // longest prefix suffix
    var len = 0;
 
    // lps[0] is always 0
    lps[0] = 0;
    var i = 1;
 
    // Loop calculates lps[i] for i = 1 to n - 1
    while (i < n) {
        if (s[i] == s[len]) {
            len++;
            lps[i] = len;
            i++;
        }
 
        // (pat[i] != pat[len])
        else {
            if (len != 0)
                len = lps[len - 1];
            // Also, note that we do not increment
            // i here
 
            // If len = 0
            else {
                lps[i] = 0;
                i++;
            }
        }
    }
 
    return lps;
}
 
// Function to find the longest substring
// which is prefix as well as a
// sub-string of s[1...n-2]
function Longestsubstring( s)
{
    // Find longest prefix suffix
    var lps = compute_lps(s);
    var n = s.length;
 
    // If lps of n-1 is zero
    if (lps[n - 1] == 0) {
        document.write( -1);
        return;
    }
 
    for (var i = 0; i < n - 1; i++) {
 
        // At any position lps[i] equals to lps[n - 1]
        if (lps[i] == lps[n - 1]) {
            document.write( s.substring(0, lps[i]));
            return;
        }
    }
 
    // If answer is not possible
    if (lps[lps[n - 1] - 1] == 0)
        document.write( -1);
    else
        document.write( s.substr(0, lps[lps[n - 1] - 1]));
}
 
// Driver code
var s = "fixprefixsuffix";
 
// function call
Longestsubstring(s);
 
</script>
Output: 
fix

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :