Skip to content
Related Articles

Related Articles

Find sum of even and odd nodes in a linked list
  • Difficulty Level : Easy
  • Last Updated : 28 Nov, 2019
GeeksforGeeks - Summer Carnival Banner

Given a linked list, the task is to find the sum of even and odd nodes in it separately.

Examples:

Input: 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7
Output:
Even Sum = 12
Odd Sum = 16

Input: 5 -> 7 -> 8 -> 10 -> 15
Output:
Even Sum = 18
Odd Sum = 27

Approach: Traverse the whole linked list and for each node:-



  1. If the element is even then we add that element to the variable which is holding the sum of even elements.
  2. If the element is odd then we add that element to the variable which is holding the sum of odd elements.

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
  
// Represents node of the linked list
struct Node {
    int data;
    Node* next;
};
  
// Function to insert a node at the
// end of the linked list
void insert(Node** root, int item)
{
    Node *ptr = *root, *temp = new Node;
    temp->data = item;
    temp->next = NULL;
  
    if (*root == NULL)
        *root = temp;
    else {
        while (ptr->next != NULL)
            ptr = ptr->next;
        ptr->next = temp;
    }
}
  
// Function to print the sum of even
// and odd nodes of the linked lists
void evenOdd(Node* root)
{
    int odd = 0, even = 0;
    Node* ptr = root;
    while (ptr != NULL) {
  
        // If current node's data is even
        if (ptr->data % 2 == 0)
            even += ptr->data;
  
        // If current node's data is odd
        else
            odd += ptr->data;
  
        // ptr now points to the next node
        ptr = ptr->next;
    }
  
    cout << "Even Sum = " << even << endl;
    cout << "Odd Sum = " << odd << endl;
}
  
// Driver code
int main()
{
    Node* root = NULL;
    insert(&root, 1);
    insert(&root, 2);
    insert(&root, 3);
    insert(&root, 4);
    insert(&root, 5);
    insert(&root, 6);
    insert(&root, 7);
  
    evenOdd(root);
  
    return 0;
}

Java




// Java implementation of the approach 
class GfG 
{
  
// Represents node of the linked list 
static class Node 
    int data; 
    Node next; 
}
static Node root;
  
// Function to insert a node at the 
// end of the linked list 
static void insert(int item) 
    Node ptr = root, temp = new Node(); 
    temp.data = item; 
    temp.next = null
  
    if (root == null
        root = temp; 
    else 
    
        while (ptr.next != null
            ptr = ptr.next; 
        ptr.next = temp; 
    
  
// Function to print the sum of even 
// and odd nodes of the linked lists 
static void evenOdd(Node root) 
    int odd = 0, even = 0
    Node ptr = root; 
    while (ptr != null
    
  
        // If current node's data is even 
        if (ptr.data % 2 == 0
            even += ptr.data; 
  
        // If current node's data is odd 
        else
            odd += ptr.data; 
  
        // ptr now points to the next node 
        ptr = ptr.next; 
    
  
    System.out.println("Even Sum = " + even); 
    System.out.println("Odd Sum = " + odd); 
  
// Driver code 
public static void main(String[] args) 
    // Node* root = NULL; 
    insert( 1); 
    insert( 2); 
    insert( 3); 
    insert( 4); 
    insert(5); 
    insert(6); 
    insert( 7); 
  
    evenOdd(root); 
}
  
// This code is contributed by Prerna Saini

Python3




# Python3 implementation of the approach
import math
  
# Represents node of the linked list
class Node: 
    def __init__(self, data): 
        self.data = data 
        self.next = None
  
# Function to insert a node at the
# end of the linked list
def insert(root, item):
    ptr = root
    temp = Node(item)
    temp.data = item
    temp.next = None
  
    if (root == None):
        root = temp
    else:
        while (ptr.next != None):
            ptr = ptr.next
        ptr.next = temp
      
    return root
  
# Function to print the sum of even
# and odd nodes of the linked lists
def evenOdd(root):
    odd = 0
    even = 0
    ptr = root
    while (ptr != None):
  
        # If current node's data is even
        if (ptr.data % 2 == 0):
            even = even + ptr.data
  
        # If current node's data is odd
        else:
            odd = odd + ptr.data
  
        # ptr now points to the next node
        ptr = ptr.next
      
    print( "Even Sum = ", even)
    print( "Odd Sum = ", odd)
  
# Driver code
if __name__=='__main__'
    root = None
    root = insert(root, 1)
    root = insert(root, 2)
    root = insert(root, 3)
    root = insert(root, 4)
    root = insert(root, 5)
    root = insert(root, 6)
    root = insert(root, 7)
  
    evenOdd(root)
  
# This code is contributed by AbhiThakur

C#




// C# implementation of the approach 
using System;
  
class GfG 
  
// Represents node of the linked list 
public class Node 
    public int data; 
    public Node next; 
static Node root; 
  
// Function to insert a node at the 
// end of the linked list 
static void insert(int item) 
    Node ptr = root, temp = new Node(); 
    temp.data = item; 
    temp.next = null
  
    if (root == null
        root = temp; 
    else
    
        while (ptr.next != null
            ptr = ptr.next; 
        ptr.next = temp; 
    
  
// Function to print the sum of even 
// and odd nodes of the linked lists 
static void evenOdd(Node root) 
    int odd = 0, even = 0; 
    Node ptr = root; 
    while (ptr != null
    
  
        // If current node's data is even 
        if (ptr.data % 2 == 0) 
            even += ptr.data; 
  
        // If current node's data is odd 
        else
            odd += ptr.data; 
  
        // ptr now points to the next node 
        ptr = ptr.next; 
    
  
    Console.WriteLine("Even Sum = " + even); 
    Console.WriteLine("Odd Sum = " + odd); 
  
// Driver code 
public static void Main(String []args) 
    // Node* root = NULL; 
    insert( 1); 
    insert( 2); 
    insert( 3); 
    insert( 4); 
    insert(5); 
    insert(6); 
    insert( 7); 
  
    evenOdd(root); 
  
// This code is contributed by Arnab Kundu 
Output:
Even Sum = 12
Odd Sum = 16

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :