Skip to content
Related Articles

Related Articles

Improve Article

Find normal at a given point on the curve

  • Last Updated : 10 May, 2021

Given a curve [ y = x(A – x) ], the task is to find normal at a given point ( x, y) on that curve, where A is an integer number and x, y also any integer.

Examples:  

Input: A = 2, x = 2, y = 0
Output: 2y = x - 2
Since y = x(2 - x)
      y = 2x - x^2 differentiate it with respect to x
      dy/dx = 2 - 2x  put x = 2, y = 0 in this equation
      dy/dx = 2 - 2* 2 = -2
      equation  => (Y - 0 ) = ((-1/-2))*( Y - 2)
                => 2y = x -2

Input: A = 3, x = 4, y = 5
Output: Not possible
Point is not on that curve 

Approach: First we need to find given point is on that curve or not if the point is on that curve then:  

  1. We need to differentiate that equation that point don’t think too much for differentiation of this equation if you analyze then you find that dy/dx always become A – 2x.
  2. Put x, y in dy/dx.
  3. Equation of normal is Y – y = -(1/( dy/dx )) * (X – x).

Below is the implementation of the above approach: 
 

C++




// C++ program for find curve
// at given point
#include <bits/stdc++.h>
using namespace std;
 
// function for find normal
void findNormal(int A, int x, int y)
{
    // differentiate given equation
    int dif = A - x * 2;
 
    // check that point on the curve or not
    if (y == (2 * x - x * x)) {
 
        // if differentiate is negative
        if (dif < 0)
            cout << 0 - dif << "y = "
                 << "x" << (0 - x) + (y * dif);
 
        else if (dif > 0)
 
            // differentiate is positive
            cout << dif << "y = "
                 << "-x+" << x + dif * y;
 
        // differentiate  is zero
        else
            cout << "x = " << x;
    }
 
    // other wise normal not found
    else
        cout << "Not possible";
}
 
// Driver code
int main()
{
    // declare variable
    int A = 2, x = 2, y = 0;
 
    // call function findNormal
    findNormal(A, x, y);
    return 0;
}

Java




// Java program for find curve
// at given point
 
import java.io.*;
 
class GFG {
 
// function for find normal
static void findNormal(int A, int x, int y)
{
    // differentiate given equation
    int dif = A - x * 2;
 
    // check that point on the curve or not
    if (y == (2 * x - x * x)) {
 
        // if differentiate is negative
        if (dif < 0)
            System.out.print( (0 - dif) + "y = "
                + "x" +((0 - x) + (y * dif)));
 
        else if (dif > 0)
 
            // differentiate is positive
            System.out.print( dif + "y = "
                + "-x+" + (x + dif * y));
 
        // differentiate is zero
        else
            System.out.print( "x = " +x);
    }
 
    // other wise normal not found
    else
        System.out.println( "Not possible");
}
 
       // Driver code
    public static void main (String[] args) {
        // declare variable
    int A = 2, x = 2, y = 0;
 
    // call function findNormal
    findNormal(A, x, y);;
    }
}
// This Code is contributed by inder_verma..

Python3




# Python 3 program for find curve
# at given point
 
# function for find normal
def findNormal(A, x, y):
     
    # differentiate given equation
    dif = A - x * 2
 
    # check that point on the curve or not
    if (y == (2 * x - x * x)):
         
        # if differentiate is negative
        if (dif < 0):
            print(0 - dif, "y =", "x",
                 (0 - x) + (y * dif))
 
        elif (dif > 0):
             
            # differentiate is positive
            print(dif, "y =", "- x +",
                        x + dif * y)
 
        # differentiate is zero
        else:
            print("x =", x)
 
    # other wise normal not found
    else:
        print("Not possible")
 
# Driver code
if __name__ == '__main__':
     
    # declare variable
    A = 2
    x = 2
    y = 0
 
    # call function findNormal
    findNormal(A, x, y)
     
# This code is contributed By
# Surendra_Gangwar

C#




// C# program for find curve
// at given point
using System;
 
class GFG
{
     
// function for find normal
static void findNormal(int A,
                       int x, int y)
{
    // differentiate given equation
    int dif = A - x * 2;
 
    // check that point on
    // the curve or not
    if (y == (2 * x - x * x))
    {
 
        // if differentiate is negative
        if (dif < 0)
            Console.Write((0 - dif) + "y = " +
                   "x" + ((0 - x) + (y * dif)));
 
        else if (dif > 0)
 
            // differentiate is positive
            Console.Write(dif + "y = " +
                          "-x + " + (x + dif * y));
 
        // differentiate is zero
        else
            Console.Write("x = " + x);
    }
 
    // other wise normal not found
    else
        Console.WriteLine("Not possible");
}
 
// Driver code
static public void Main ()
{
    // declare variable
    int A = 2, x = 2, y = 0;
     
    // call function findNormal
    findNormal(A, x, y);
}
}
 
// This code is contributed by ajit

PHP




<?php
// PHP program for find curve
// at given point
 
// function for find normal
function findNormal($A, $x, $y)
{
    // differentiate given equation
    $dif = $A - $x * 2;
 
    // check that point on the
    // curve or not
    if ($y == (2 * $x - $x * $x))
    {
 
        // if differentiate is negative
        if ($dif < 0)
            echo (0 - $dif), "y = ",
                 "x" , (0 - $x) + ($y * $dif);
 
        else if ($dif > 0)
 
            // differentiate is positive
            echo $dif , "y = ",
                 "-x+" ,( $x + $dif * $y);
 
        // differentiate is zero
        else
            echo "x = " , $x;
    }
 
    // other wise normal not found
    else
        echo "Not possible";
}
 
// Driver code
 
// declare variable
$A = 2;
$x = 2;
$y = 0;
 
// call function findNormal
findNormal($A, $x, $y);
 
// This code is contributed by ajit
?>

Javascript




<script>
    // Javascript program for find curve at given point
     
    // function for find normal
    function findNormal(A, x, y)
    {
        // differentiate given equation
        let dif = A - x * 2;
 
        // check that point on
        // the curve or not
        if (y == (2 * x - x * x))
        {
 
            // if differentiate is negative
            if (dif < 0)
                document.write((0 - dif) + "y = " +
                       "x" + ((0 - x) + (y * dif)));
 
            else if (dif > 0)
 
                // differentiate is positive
                document.write(dif + "y = " +
                              "-x + " + (x + dif * y));
 
            // differentiate is zero
            else
                document.write("x = " + x);
        }
 
        // other wise normal not found
        else
            document.write("Not possible");
    }
     
    // declare variable
    let A = 2, x = 2, y = 0;
       
    // call function findNormal
    findNormal(A, x, y);
     
</script>
Output: 
2y = x-2

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :