Given a curve [ y = x(A – x) ], the task is to find normal at a given point ( x, y) on that curve, where A is an integer number and x, y also any integer.
Examples:
Input: A = 2, x = 2, y = 0
Output: 2y = x - 2
Since y = x(2 - x)
y = 2x - x^2 differentiate it with respect to x
dy/dx = 2 - 2x put x = 2, y = 0 in this equation
dy/dx = 2 - 2* 2 = -2
equation => (Y - 0 ) = ((-1/-2))*( Y - 2)
=> 2y = x -2
Input: A = 3, x = 4, y = 5
Output: Not possible
Point is not on that curve
Approach: First we need to find given point is on that curve or not if the point is on that curve then:
- We need to differentiate that equation that point don’t think too much for differentiation of this equation if you analyze then you find that dy/dx always become A – 2x.
- Put x, y in dy/dx.
- Equation of normal is Y – y = -(1/( dy/dx )) * (X – x).
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void findNormal( int A, int x, int y)
{
int dif = A - x * 2;
if (y == (2 * x - x * x)) {
if (dif < 0)
cout << 0 - dif << "y = "
<< "x" << (0 - x) + (y * dif);
else if (dif > 0)
cout << dif << "y = "
<< "-x+" << x + dif * y;
else
cout << "x = " << x;
}
else
cout << "Not possible" ;
}
int main()
{
int A = 2, x = 2, y = 0;
findNormal(A, x, y);
return 0;
}
|
Java
import java.io.*;
class GFG {
static void findNormal( int A, int x, int y)
{
int dif = A - x * 2 ;
if (y == ( 2 * x - x * x)) {
if (dif < 0 )
System.out.print( ( 0 - dif) + "y = "
+ "x" +(( 0 - x) + (y * dif)));
else if (dif > 0 )
System.out.print( dif + "y = "
+ "-x+" + (x + dif * y));
else
System.out.print( "x = " +x);
}
else
System.out.println( "Not possible" );
}
public static void main (String[] args) {
int A = 2 , x = 2 , y = 0 ;
findNormal(A, x, y);;
}
}
|
Python3
def findNormal(A, x, y):
dif = A - x * 2
if (y = = ( 2 * x - x * x)):
if (dif < 0 ):
print ( 0 - dif, "y =" , "x" ,
( 0 - x) + (y * dif))
elif (dif > 0 ):
print (dif, "y =" , "- x +" ,
x + dif * y)
else :
print ( "x =" , x)
else :
print ( "Not possible" )
if __name__ = = '__main__' :
A = 2
x = 2
y = 0
findNormal(A, x, y)
|
C#
using System;
class GFG
{
static void findNormal( int A,
int x, int y)
{
int dif = A - x * 2;
if (y == (2 * x - x * x))
{
if (dif < 0)
Console.Write((0 - dif) + "y = " +
"x" + ((0 - x) + (y * dif)));
else if (dif > 0)
Console.Write(dif + "y = " +
"-x + " + (x + dif * y));
else
Console.Write( "x = " + x);
}
else
Console.WriteLine( "Not possible" );
}
static public void Main ()
{
int A = 2, x = 2, y = 0;
findNormal(A, x, y);
}
}
|
PHP
<?php
function findNormal( $A , $x , $y )
{
$dif = $A - $x * 2;
if ( $y == (2 * $x - $x * $x ))
{
if ( $dif < 0)
echo (0 - $dif ), "y = " ,
"x" , (0 - $x ) + ( $y * $dif );
else if ( $dif > 0)
echo $dif , "y = " ,
"-x+" ,( $x + $dif * $y );
else
echo "x = " , $x ;
}
else
echo "Not possible" ;
}
$A = 2;
$x = 2;
$y = 0;
findNormal( $A , $x , $y );
?>
|
Javascript
<script>
function findNormal(A, x, y)
{
let dif = A - x * 2;
if (y == (2 * x - x * x))
{
if (dif < 0)
document.write((0 - dif) + "y = " +
"x" + ((0 - x) + (y * dif)));
else if (dif > 0)
document.write(dif + "y = " +
"-x + " + (x + dif * y));
else
document.write( "x = " + x);
}
else
document.write( "Not possible" );
}
let A = 2, x = 2, y = 0;
findNormal(A, x, y);
</script>
|
Time Complexity : O(1) ,as we are not using any loop.
Auxiliary Space : O(1) ,as we are not using any extra space.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
14 Jun, 2022
Like Article
Save Article