Skip to content
Related Articles

Related Articles

Find last remaining Array element by multiplying boundary elements based on given rules

View Discussion
Improve Article
Save Article
Like Article
  • Last Updated : 28 Jun, 2022

Given an array arr[], the task is to find the only remaining element in the array after applying the below operation till there is only one element left in the array. In an operation, multiply the boundary elements of this array and if the size of the array is:

  • Even: Insert the product in the middle of the array and remove the boundary elements
  • Odd: Subtract the middle element from the product and replace the middle element with the absolute difference and remove the boundary elements.

Examples:

Input: arr[] = [ 1, 2, 3, 4, 5, 6 ]
Output: 8
Explanation: See the image below for explanation.

Input: arr[] = [ 3, 5, 1, 8, 9]
Output: 14

 

Approach: The solution is based on greedy approach. Delete the elements from the ends of the array and insert the data in the middle of the array. Now follow the below steps to solve this problem:

  1. Run a while loop, till the size of the array arr[] is greater than 1. In each iteration of this loop:
    • Take the product of the first and the last elements and then pop them.
    • If the size of the array is even, then insert the product in the middle of the array arr[].
    • If it is odd then subtract the middle element from the product and replace it with the middle element.
  2. After the loop ends, print the only remaining element in the array.

C++




// C++ program for the baove approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to reduce array
void PSarray(vector<int> A)
{
    while (A.size() != 1) {
 
        // If size of array is Even
        if (A.size() % 2 == 0) {
 
            // Product of boundary element
            int x = A[0] * A[A.size() - 1];
            A.erase(A.begin());
            A.pop_back();
            int n = A.size();
            // Insert product in middle of element
            A.insert(A.begin() + n / 2, x);
        }
        // Else if size of array is Odd
        else {
            int x = A[0] * A[A.size() - 1];
            A.erase(A.begin());
            A.pop_back();
            int n = A.size();
 
            // Subtract middle element from product and
            // replace middle element
            A[n / 2] = x - A[n / 2];
        }
    }
 
    // Print the last remaining array element
    cout << A[0] << endl;
}
// Driver Code
int main()
{
    vector<int> arr = { 1, 2, 3, 4, 5, 6 };
    PSarray(arr);
    return 0;
}
 
// This code is contributed by Tapesh (tapeshdua420)

Java




// Java program for the baove approach
import java.util.ArrayList;
import java.util.Arrays;
 
class GFG
{
 
  // Function to reduce array
  static void PSarray(ArrayList<Integer> A)
  {
    while (A.size() != 1)
    {
 
      // If size of array is Even
      if (A.size() % 2 == 0){
 
        // Product of boundary element
        int x = A.get(0)*A.get(A.size()-1);
        A.remove(0);
        A.remove(A.size() - 1);
        int n = A.size();
 
        // Insert product in middle of element
        A.add(n/2, x);
      }
 
      // Else if size of array is Odd
      else {
        int x = A.get(0)*A.get(A.size() - 1);
        A.remove(0);
        A.remove(A.size() - 1);
        int n = A.size();
 
        // Subtract middle element from product and
        // replace middle element
        A.set(n / 2, x - A.get(n / 2));
 
      }
    }
 
    // Print the last remaining array element
    System.out.println(A);
 
  }
 
  // Driver Code
  public static void main(String[] args) {
 
    Integer []arr = {1, 2, 3, 4, 5, 6};
    ArrayList<Integer> A = new ArrayList<>(Arrays.asList(arr));
    PSarray(A);
  }
}
 
// This code is contributed by shikhasingrajput

Python3




# Python program for the baove approach
 
# Function to reduce array
def PSarray(A):
    while len(A) != 1:
 
        # If size of array is Even
        if len(A) % 2 == 0:
 
            # Product of boundary element
            x = A.pop(0)*A.pop()
            n = len(A)
 
            # Insert product in middle of element
            A.insert(n//2, x)
 
        # Else if size of array is Odd
        else:
            x = A.pop(0)*A.pop()
            n = len(A)
 
            # Subtract middle element from product and
            # replace middle element
            A[n//2] = x-A[n//2]
 
    # Print the last remaining array element
    print(A[0])
 
 
# Driver Code
if __name__ == "__main__":
  A = [1, 2, 3, 4, 5, 6]
  PSarray(A)

C#




// C# program for the baove approach
using System;
using System.Collections.Generic;
 
public class GFG
{
 
  // Function to reduce array
  static void PSarray(List<int> A)
  {
    while (A.Count != 1)
    {
 
      // If size of array is Even
      if (A.Count % 2 == 0){
 
        // Product of boundary element
        int x = A[0]*A[A.Count-1];
        A.RemoveAt(0);
        A.RemoveAt(A.Count - 1);
        int n = A.Count;
 
        // Insert product in middle of element
        A.Insert(n/2,x);
 
      }
 
      // Else if size of array is Odd
      else {
        int x = A[0]*A[A.Count - 1];
        A.RemoveAt(0);
        A.RemoveAt(A.Count - 1);
        int n = A.Count;
 
        // Subtract middle element from product and
        // replace middle element
        A[n / 2] = x - A[n / 2];
 
      }
    }
    // Print the last remaining array element
    A.ForEach(x=>Console.Write(x));
 
  }
 
  // Driver Code
  public static void Main(String[] args) {
 
    int []arr = {1, 2, 3, 4, 5, 6};
    List<int> A = new List<int>(arr);
    PSarray(A);
  }
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// JavaScript program for the baove approach
 
// Function to reduce array
function PSarray(A)
{
    while (A.length != 1)
    {
         
        // If size of array is Even
        if (A.length % 2 == 0)
        {
             
            // Product of boundary element
            let x = A.shift() * A.pop()
 
            let n = A.length
 
            // Insert product in middle of element
            let p1 = A.slice(0, Math.floor(A.length / 2))
            p1.push(x)
            let p2 = A.slice(Math.floor(A.length / 2))
            A = p1.concat(p2)
        }
         
        // Else if size of array is Odd
        else
        {
            let x = A.shift() * A.pop()
            let n = A.length
 
            // Subtract middle element from product and
            // replace middle element
            A[Math.floor(n / 2)] = x - A[Math.floor(n / 2)]
        }
         
        // Print the last remaining array element
    }
    document.write(A[0])
}
 
// Driver Code
let A = [ 1, 2, 3, 4, 5, 6 ]
 
PSarray(A)
 
// This code is contributed by Potta Lokesh
 
</script>

Output

8

Time Complexity: O(N2)
Auxiliary Space: O(1)

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!