Open In App
Related Articles

Find indices of elements equal to zero in a NumPy array

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Sometimes we need to find out the indices of all null elements in the array. Numpy provides many functions to compute indices of all null elements. 

Method 1: Finding indices of null elements using numpy.where()

This function returns the indices of elements in an input array where the given condition is satisfied.

Syntax : 

numpy.where(condition[, x, y])
When True, yield x, otherwise yield y

Python3

# importing Numpy package
import numpy as np
 
# creating a 1-D Numpy array
n_array = np.array([1, 0, 2, 0, 3, 0, 0, 5,
                    6, 7, 5, 0, 8])
 
print("Original array:")
print(n_array)
 
# finding indices of null elements using np.where()
print("\nIndices of elements equal to zero of the \
given 1-D array:")
 
res = np.where(n_array == 0)[0]
print(res)

                    

Output:

Time complexity: O(n) – where n is the size of the array
Auxiliary space: O(k) – where k is the number of null elements in the array, as we are storing their indices in a separate array.

Method 2: Finding indices of null elements using numpy.argwhere()

This function is used to find the indices of array elements that are non-zero, grouped by element.

Syntax

numpy.argwhere(arr)

Python3

# importing Numpy package
import numpy as np
 
# creating a 3-D Numpy array
n_array = np.array([[0, 2, 3],
                    [4, 1, 0],
                    [0, 0, 2]])
 
print("Original array:")
print(n_array)
 
# finding indices of null elements
# using np.argwhere()
print("\nIndices of null elements:")
res = np.argwhere(n_array == 0)
 
print(res)

                    

Output:

The time complexity of the code is O(m * n) where m and n are the dimensions of the 3-D Numpy array .

The auxiliary space complexity of the code is O(k) where k is the number of null elements in the 3-D Numpy array .

Method 3: Finding the indices of null elements using numpy.nonzero()

This function is used to Compute the indices of the elements that are non-zero. It returns a tuple of arrays, one for each dimension of arr, containing the indices of the non-zero elements in that dimension.

Syntax:

numpy.nonzero(arr)

Python3

# importing Numpy package
import numpy as np
 
# creating a 1-D Numpy array
n_array = np.array([1, 10, 2, 0, 3, 9, 0,
                    5, 0, 7, 5, 0, 0])
 
print("Original array:")
print(n_array)
 
# finding indices of null elements using
# np.nonzero()
print("\nIndices of null elements:")
 
res = np.nonzero(n_array == 0)
print(res)

                    

Output:

The time complexity  is O(n), where n is the number of elements in the input array. 

The auxiliary space complexity  is O(k), where k is the number of null elements in the input array. 

Method 4: Using numpy.extract() method

Use the numpy.extract() method. This method returns an array of values that satisfy a certain condition. In this case, we can use it to extract the indices of elements that are equal to zero.

Python3

# importing Numpy package
import numpy as np
 
# creating a 1-D Numpy array
n_array = np.array([1, 0, 2, 0, 3, 0, 0, 5,
                    6, 7, 5, 0, 8])
 
print("Original array:")
print(n_array)
 
# finding indices of null elements using np.extract()
print("\nIndices of elements equal to zero of the \
given 1-D array:")
 
res = np.extract(n_array == 0, np.arange(len(n_array)))
print(res)

                    

Output:

Original array:
[1 0 2 0 3 0 0 5 6 7 5 0 8]
Indices of elements equal to zero of the given 1-D array:
[ 1  3  5  6 11]

Time complexity: O(n), where n is the length of the input array.
Auxiliary space: O(m), where m is the number of elements in the input array that are equal to zero. 



Last Updated : 08 Mar, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads