Skip to content
Related Articles

Related Articles

Find if there is a subarray with 0 sum
  • Difficulty Level : Medium
  • Last Updated : 08 Feb, 2021

Given an array of positive and negative numbers, find if there is a subarray (of size at-least one) with 0 sum.

Examples : 

Input: {4, 2, -3, 1, 6}
Output: true 
Explanation:
There is a subarray with zero sum from index 1 to 3.

Input: {4, 2, 0, 1, 6}
Output: true 
Explanation:
There is a subarray with zero sum from index 2 to 2.

Input: {-3, 2, 3, 1, 6}
Output: false



A simple solution is to consider all subarrays one by one and check the sum of every subarray. We can run two loops: the outer loop picks a starting point i and the inner loop tries all subarrays starting from i (See this for implementation). The time complexity of this method is O(n2).
We can also use hashing. The idea is to iterate through the array and for every element arr[i], calculate the sum of elements from 0 to i (this can simply be done as sum += arr[i]). If the current sum has been seen before, then there is a zero-sum array. Hashing is used to store the sum values so that we can quickly store sum and find out whether the current sum is seen before or not.
Example :

arr[] = {1, 4, -2, -2, 5, -4, 3}

If we consider all prefix sums, we can
notice that there is a subarray with 0
sum when :
1) Either a prefix sum repeats or
2) Or prefix sum becomes 0.

Prefix sums for above array are:
1, 5, 3, 1, 6, 2, 5

Since prefix sum 1 repeats, we have a subarray
with 0 sum. 

Following is implementation of the above approach. 

C++




// A C++ program to find if
// there is a zero sum subarray
#include <bits/stdc++.h>
using namespace std;
 
bool subArrayExists(int arr[], int n)
{
    unordered_set<int> sumSet;
 
    // Traverse through array
    // and store prefix sums
    int sum = 0;
    for (int i = 0; i < n; i++)
    {
        sum += arr[i];
 
        // If prefix sum is 0 or
        // it is already present
        if (sum == 0
            || sumSet.find(sum)
            != sumSet.end())
            return true;
 
        sumSet.insert(sum);
    }
    return false;
}
 
// Driver code
int main()
{
    int arr[] = { -3, 2, 3, 1, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
    if (subArrayExists(arr, n))
        cout << "Found a subarray with 0 sum";
    else
        cout << "No Such Sub Array Exists!";
    return 0;
}


Java




// A Java program to find
// if there is a zero sum subarray
import java.util.HashSet;
import java.util.Set;
 
class ZeroSumSubarray
{
    // Returns true if arr[]
    // has a subarray with sero sum
    static Boolean subArrayExists(int arr[])
    {
        // Creates an empty hashset hs
        Set<Integer> hs = new HashSet<Integer>();
 
        // Initialize sum of elements
        int sum = 0;
 
        // Traverse through the given array
        for (int i = 0; i < arr.length; i++)
        {
            // Add current element to sum
            sum += arr[i];
 
            // Return true in following cases
            // a) Current element is 0
            // b) sum of elements from 0 to i is 0
            // c) sum is already present in hash map
            if (arr[i] == 0
                || sum == 0
                || hs.contains(sum))
                return true;
 
            // Add sum to hash set
            hs.add(sum);
        }
 
        // We reach here only when there is
        // no subarray with 0 sum
        return false;
    }
 
    // Driver code
    public static void main(String arg[])
    {
        int arr[] = { -3, 2, 3, 1, 6 };
        if (subArrayExists(arr))
            System.out.println(
                "Found a subarray with 0 sum");
        else
            System.out.println("No Such Sub Array Exists!");
    }
}


Python3




# A python program to find if
# there is a zero sum subarray
 
 
def subArrayExists(arr, n):
    # traverse through array
    # and store prefix sums
    n_sum = 0
    s = set()
 
    for i in range(n):
        n_sum += arr[i]
 
        # If prefix sum is 0 or
        # it is already present
        if n_sum == 0 or n_sum in s:
            return True
        s.add(n_sum)
 
    return False
 
 
# Driver code
arr = [-3, 2, 3, 1, 6]
n = len(arr)
if subArrayExists(arr, n) == True:
    print("Found a sunbarray with 0 sum")
else:
    print("No Such sub array exits!")
 
# This code is contributed by Shrikant13


C#




// A C# program to find if there
// is a zero sum subarray
using System;
using System.Collections.Generic;
 
class GFG {
    // Returns true if arr[] has
    // a subarray with sero sum
    static bool SubArrayExists(int[] arr)
    {
        // Creates an empty HashSet hM
        HashSet<int> hs = new HashSet<int>();
        // Initialize sum of elements
        int sum = 0;
 
        // Traverse through the given array
        for (int i = 0; i < arr.Length; i++)
        {
            // Add current element to sum
            sum += arr[i];
 
            // Return true in following cases
            // a) Current element is 0
            // b) sum of elements from 0 to i is 0
            // c) sum is already present in hash set
            if (arr[i] == 0
                || sum == 0
                || hs.Contains(sum))
                return true;
 
            // Add sum to hash set
            hs.Add(sum);
        }
 
        // We reach here only when there is
        // no subarray with 0 sum
        return false;
    }
 
    // Main Method
    public static void Main()
    {
        int[] arr = { -3, 2, 3, 1, 6 };
        if (SubArrayExists(arr))
            Console.WriteLine(
                "Found a subarray with 0 sum");
        else
            Console.WriteLine("No Such Sub Array Exists!");
    }
}


Javascript




// A Javascript program to
//  find if there is a zero sum subarray
 
const subArrayExists = (arr) => {
    const sumSet = new Set();
 
    // Traverse through array
    // and store prefix sums
    let sum = 0;
    for (let i = 0 ; i < arr.length ; i++)
    {
        sum += arr[i];
 
        // If prefix sum is 0
        // or it is already present
        if (sum === 0 || sumSet.has(sum))
            return true;
 
        sumSet.add(sum);
    }
    return false;
}
 
// Driver code
 
const arr =  [-3, 2, 3, 1, 6];
if (subArrayExists(arr))
    console.log("Found a subarray with 0 sum");
else
    console.log("No Such Sub Array Exists!");


Output

No Such Sub Array Exists!

Time Complexity of this solution can be considered as O(n) under the assumption that we have good hashing function that allows insertion and retrieval operations in O(1) time. 
Space Complexity: O(n) .Here we required extra space for unordered_set to insert array elements.
 

 

Exercise: 
Extend the above program to print starting and ending indexes of all subarrays with 0 sum.
This article is contributed by Chirag Gupta. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :