Skip to content
Related Articles

Related Articles

Improve Article
Find all palindrome numbers of given digits
  • Last Updated : 08 Jun, 2021

Given an integer D, the task is to find all the D-digit palindrome numbers.
Examples: 
 

Input: D = 1 
Output: 1 2 3 4 5 6 7 8 9
Input: D = 2 
Output: 11 22 33 44 55 66 77 88 99 
 

 

Approach: Numbers with D-digits start from 10(D – 1) to 10D – 1. So, start checking every number from this interval whether it is palindrome or not.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the
// reverse of num
int reverse(int num)
{
    int rev = 0;
    while (num > 0) {
        rev = rev * 10 + num % 10;
        num = num / 10;
    }
    return rev;
}
 
// Function that returns true
// if num is palindrome
bool isPalindrome(int num)
{
 
    // If the number is equal to the
    // reverse of it then it
    // is a palindrome
    if (num == reverse(num))
        return true;
 
    return false;
}
 
// Function to print all the
// d-digit palindrome numbers
void printPalindromes(int d)
{
    if (d <= 0)
        return;
 
    // Smallest and the largest d-digit numbers
    int smallest = pow(10, d - 1);
    int largest = pow(10, d) - 1;
 
    // Starting from the smallest d-digit
    // number till the largest
    for (int i = smallest;
         i <= largest; i++) {
 
        // If the current number
        // is palindrome
        if (isPalindrome(i))
            cout << i << " ";
    }
}
 
// Driver code
int main()
{
    int d = 2;
 
    printPalindromes(d);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
     
    // Function to return the
    // reverse of num
    static int reverse(int num)
    {
        int rev = 0;
        while (num > 0)
        {
            rev = rev * 10 + num % 10;
            num = num / 10;
        }
        return rev;
    }
     
    // Function that returns true
    // if num is palindrome
    static boolean isPalindrome(int num)
    {
     
        // If the number is equal to the
        // reverse of it then it
        // is a palindrome
        if (num == reverse(num))
            return true;
     
        return false;
    }
     
    // Function to print all the
    // d-digit palindrome numbers
    static void printPalindromes(int d)
    {
        if (d <= 0)
            return;
     
        // Smallest and the largest d-digit numbers
        int smallest = (int)Math.pow(10, d - 1);
        int largest = (int)Math.pow(10, d) - 1;
     
        // Starting from the smallest d-digit
        // number till the largest
        for (int i = smallest; i <= largest; i++)
        {
 
            // If the current number
            // is palindrome
            if (isPalindrome(i))
                System.out.print(i + " ");
        }
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int d = 2;
     
        printPalindromes(d);
    }
}
 
// This code is contributed by AnkitRai01

Python3




# Python implementation of the approach
 
# Function to return the
# reverse of num
def reverse(num):
    rev = 0;
    while (num > 0):
        rev = rev * 10 + num % 10;
        num = num // 10;
 
    return rev;
 
# Function that returns true
# if num is palindrome
def isPalindrome(num):
    # If the number is equal to the
    # reverse of it then it
    # is a palindrome
    if (num == reverse(num)):
        return True;
 
    return False;
 
# Function to prall the
# d-digit palindrome numbers
def printPalindromes(d):
 
    if (d <= 0):
        return;
 
    # Smallest and the largest d-digit numbers
    smallest = pow(10, d - 1);
    largest = pow(10, d) - 1;
 
    # Starting from the smallest d-digit
    # number till the largest
    for i in range(smallest, largest + 1):
 
        # If the current number
        # is palindrome
        if (isPalindrome(i)):
            print(i, end = " ");
 
# Driver code
d = 2;
 
printPalindromes(d);
 
# This code is contributed by 29AjayKumar

C#




// C# implementation of the approach
using System;
     
class GFG
{
     
    // Function to return the
    // reverse of num
    static int reverse(int num)
    {
        int rev = 0;
        while (num > 0)
        {
            rev = rev * 10 + num % 10;
            num = num / 10;
        }
        return rev;
    }
     
    // Function that returns true
    // if num is palindrome
    static bool isPalindrome(int num)
    {
     
        // If the number is equal to the
        // reverse of it then it
        // is a palindrome
        if (num == reverse(num))
            return true;
     
        return false;
    }
     
    // Function to print all the
    // d-digit palindrome numbers
    static void printPalindromes(int d)
    {
        if (d <= 0)
            return;
     
        // Smallest and the largest d-digit numbers
        int smallest = (int)Math.Pow(10, d - 1);
        int largest = (int)Math.Pow(10, d) - 1;
     
        // Starting from the smallest d-digit
        // number till the largest
        for (int i = smallest; i <= largest; i++)
        {
 
            // If the current number
            // is palindrome
            if (isPalindrome(i))
                Console.Write(i + " ");
        }
    }
     
    // Driver code
    public static void Main (String[] args)
    {
        int d = 2;
     
        printPalindromes(d);
    }
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
    // JavaScript implementation of the approach
     
    // Function to return the
    // reverse of num
    function reverse(num)
    {
        let rev = 0;
        while (num > 0)
        {
            rev = rev * 10 + num % 10;
            num = parseInt(num / 10, 10);
        }
        return rev;
    }
       
    // Function that returns true
    // if num is palindrome
    function isPalindrome(num)
    {
       
        // If the number is equal to the
        // reverse of it then it
        // is a palindrome
        if (num == reverse(num))
            return true;
       
        return false;
    }
       
    // Function to print all the
    // d-digit palindrome numbers
    function printPalindromes(d)
    {
        if (d <= 0)
            return;
       
        // Smallest and the largest d-digit numbers
        let smallest = Math.pow(10, d - 1);
        let largest = Math.pow(10, d) - 1;
       
        // Starting from the smallest d-digit
        // number till the largest
        for (let i = smallest; i <= largest; i++)
        {
   
            // If the current number
            // is palindrome
            if (isPalindrome(i))
                document.write(i + " ");
        }
    }
     
    let d = 2;
       
      printPalindromes(d);
             
</script>
Output: 
11 22 33 44 55 66 77 88 99

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live




My Personal Notes arrow_drop_up
Recommended Articles
Page :