Given N ranges containing L and R. The task is to check or find the index(0-based) of the range which covers all the other given N-1 ranges. If there is no such range, print -1.
Note: All L and R points are distinct.
Examples:
Input: L[] = {1, 2}, R[] = {1, 2}
Output: -1
Input: L[] = {2, 4, 3, 1}, R[] = {4, 6, 7, 9}
Output: 3
Range at 3rd index i.e. 1 to 9 covers
all the elements of other N-1 ranges.
Approach: Since all L and R points are distinct, find the range with the smallest L point and the range with the largest R point, if both are in the same Range, it would mean that all other ranges lie within it, otherwise it is not possible.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int findRange( int n, int lf[], int rt[])
{
int mnlf = 0, mxrt = 0;
for ( int i = 1; i < n; i++) {
if (lf[i] < lf[mnlf])
mnlf = i;
if (rt[i] > rt[mxrt])
mxrt = i;
}
if (mnlf == mxrt)
return mnlf;
else
return -1;
}
int main()
{
int N = 4;
int L[] = { 2, 4, 3, 1 };
int R[] = { 4, 6, 7, 9 };
cout << findRange(N, L, R);
return 0;
}
|
Java
import java.io.*;
class GFG {
static int findRange( int n, int lf[], int rt[])
{
int mnlf = 0 , mxrt = 0 ;
for ( int i = 1 ; i < n; i++) {
if (lf[i] < lf[mnlf])
mnlf = i;
if (rt[i] > rt[mxrt])
mxrt = i;
}
if (mnlf == mxrt)
return mnlf;
else
return - 1 ;
}
public static void main (String[] args) {
int N = 4 ;
int [] L = { 2 , 4 , 3 , 1 };
int []R = { 4 , 6 , 7 , 9 };
System.out.println( findRange(N, L, R));
}
}
|
Python3
def findRange(n, lf, rt):
mnlf, mxrt = 0 , 0
for i in range ( 1 , n):
if lf[i] < lf[mnlf]:
mnlf = i
if rt[i] > rt[mxrt]:
mxrt = i
if mnlf = = mxrt:
return mnlf
else :
return - 1
if __name__ = = "__main__" :
N = 4
L = [ 2 , 4 , 3 , 1 ]
R = [ 4 , 6 , 7 , 9 ]
print (findRange(N, L, R))
|
C#
using System;
class GFG
{
static int findRange( int n, int []lf,
int []rt)
{
int mnlf = 0, mxrt = 0;
for ( int i = 1; i < n; i++)
{
if (lf[i] < lf[mnlf])
mnlf = i;
if (rt[i] > rt[mxrt])
mxrt = i;
}
if (mnlf == mxrt)
return mnlf;
else
return -1;
}
public static void Main ()
{
int N = 4;
int [] L = { 2, 4, 3, 1 };
int []R = { 4, 6, 7, 9 };
Console.WriteLine(findRange(N, L, R));
}
}
|
PHP
<?php
function findRange( $n , $lf , $rt )
{
$mnlf = 0; $mxrt = 0;
for ( $i = 1; $i < $n ; $i ++)
{
if ( $lf [ $i ] < $lf [ $mnlf ])
$mnlf = $i ;
if ( $rt [ $i ] > $rt [ $mxrt ])
$mxrt = $i ;
}
if ( $mnlf == $mxrt )
return $mnlf ;
else
return -1;
}
$N = 4;
$L = array ( 2, 4, 3, 1 );
$R = array ( 4, 6, 7, 9 );
echo findRange( $N , $L , $R );
?>
|
Javascript
<script>
function findRange(n, lf, rt)
{
let mnlf = 0, mxrt = 0;
for (let i = 1; i < n; i++) {
if (lf[i] < lf[mnlf])
mnlf = i;
if (rt[i] > rt[mxrt])
mxrt = i;
}
if (mnlf == mxrt)
return mnlf;
else
return -1;
}
let N = 4;
let L = [ 2, 4, 3, 1 ];
let R = [ 4, 6, 7, 9 ];
document.write(findRange(N, L, R));
</script>
|
Complexity Analysis:
- Time Complexity: O(N)
- Auxiliary Space: O(1) as it is using constant variables
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
09 Sep, 2022
Like Article
Save Article