Open In App
Related Articles

Find a range that covers all the elements of given N ranges

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given N ranges containing L and R. The task is to check or find the index(0-based) of the range which covers all the other given N-1 ranges. If there is no such range, print -1.

Note: All L and R points are distinct.

Examples: 

Input: L[] = {1, 2}, R[] = {1, 2} 
Output: -1

Input: L[] = {2, 4, 3, 1}, R[] = {4, 6, 7, 9} 
Output:
Range at 3rd index i.e. 1 to 9 covers 
all the elements of other N-1 ranges.

Approach: Since all L and R points are distinct, find the range with the smallest L point and the range with the largest R point, if both are in the same Range, it would mean that all other ranges lie within it, otherwise it is not possible.

Below is the implementation of the above approach: 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check range
int findRange(int n, int lf[], int rt[])
{
 
    // Index of smallest L and largest R
    int mnlf = 0, mxrt = 0;
    for (int i = 1; i < n; i++) {
        if (lf[i] < lf[mnlf])
            mnlf = i;
        if (rt[i] > rt[mxrt])
            mxrt = i;
    }
 
    // If the same range has smallest L
    // and largest R
    if (mnlf == mxrt)
        return mnlf;
    else
        return -1;
}
 
// Driver Code
int main()
{
    int N = 4;
    int L[] = { 2, 4, 3, 1 };
    int R[] = { 4, 6, 7, 9 };
 
    cout << findRange(N, L, R);
 
    return 0;
}


Java




// Java implementation of the above approach
 
import java.io.*;
 
class GFG {
// Function to check range
static int  findRange(int n, int lf[], int rt[])
{
 
    // Index of smallest L and largest R
    int mnlf = 0, mxrt = 0;
    for (int i = 1; i < n; i++) {
        if (lf[i] < lf[mnlf])
            mnlf = i;
        if (rt[i] > rt[mxrt])
            mxrt = i;
    }
 
    // If the same range has smallest L
    // and largest R
    if (mnlf == mxrt)
        return mnlf;
    else
        return -1;
}
 
// Driver Code
 
 
    public static void main (String[] args) {
            int N = 4;
    int[] L = { 2, 4, 3, 1 };
    int []R = { 4, 6, 7, 9 };
 
    System.out.println( findRange(N, L, R));
    }
}
// This code is contributed by anuj_67..


Python3




# Python3 implementation of the
# above approach
 
# Function to check range
def findRange(n, lf, rt):
 
    # Index of smallest L and
    # largest R
    mnlf, mxrt = 0, 0
    for i in range(1, n):
        if lf[i] < lf[mnlf]:
            mnlf = i
        if rt[i] > rt[mxrt]:
            mxrt = i
 
    # If the same range has smallest
    # L and largest R
    if mnlf == mxrt:
        return mnlf
    else:
        return -1
 
# Driver Code
if __name__ == "__main__":
 
    N = 4
    L = [2, 4, 3, 1]
    R = [4, 6, 7, 9]
 
    print(findRange(N, L, R))
 
# This code is contributed
# by Rituraj Jain


C#




// C# implementation of the
// above approach
using System;
 
class GFG
{
// Function to check range
static int findRange(int n, int []lf,
                            int []rt)
{
 
    // Index of smallest L and largest R
    int mnlf = 0, mxrt = 0;
    for (int i = 1; i < n; i++)
    {
        if (lf[i] < lf[mnlf])
            mnlf = i;
        if (rt[i] > rt[mxrt])
            mxrt = i;
    }
 
    // If the same range has smallest L
    // and largest R
    if (mnlf == mxrt)
        return mnlf;
    else
        return -1;
}
 
// Driver Code
public static void Main ()
{
    int N = 4;
    int[] L = { 2, 4, 3, 1 };
    int []R = { 4, 6, 7, 9 };
     
    Console.WriteLine(findRange(N, L, R));
}
}
 
// This code is contributed by anuj_67..


PHP




<?php
// PHP implementation of the above approach
 
// Function to check range
function findRange($n, $lf, $rt)
{
 
    // Index of smallest L and largest R
    $mnlf = 0; $mxrt = 0;
    for ($i = 1; $i <$n; $i++)
    {
        if ($lf[$i] < $lf[$mnlf])
            $mnlf = $i;
        if ($rt[$i] > $rt[$mxrt])
            $mxrt = $i;
    }
 
    // If the same range has smallest
    // L and largest R
    if ($mnlf == $mxrt)
        return $mnlf;
    else
        return -1;
}
 
// Driver Code
$N = 4;
$L = array( 2, 4, 3, 1 );
$R = array( 4, 6, 7, 9 );
 
echo findRange($N, $L, $R);
 
// This code is contributed
// by inder_verma
?>


Javascript




<script>
 
// JavaScript implementation of the above approach
 
// Function to check range
function findRange(n, lf, rt)
{
 
    // Index of smallest L and largest R
    let mnlf = 0, mxrt = 0;
    for (let i = 1; i < n; i++) {
        if (lf[i] < lf[mnlf])
            mnlf = i;
        if (rt[i] > rt[mxrt])
            mxrt = i;
    }
 
    // If the same range has smallest L
    // and largest R
    if (mnlf == mxrt)
        return mnlf;
    else
        return -1;
}
 
// Driver Code
    let N = 4;
    let L = [ 2, 4, 3, 1 ];
    let R = [ 4, 6, 7, 9 ];
 
    document.write(findRange(N, L, R));
 
 
// This code is contributed by Surbhi Tyagi.
 
</script>


Output

3

Complexity Analysis:

  • Time Complexity: O(N)
  • Auxiliary Space: O(1) as it is using constant variables

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 09 Sep, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials