Skip to content
Related Articles

Related Articles

Filtering rows based on column values in PySpark dataframe

View Discussion
Improve Article
Save Article
  • Last Updated : 29 Jun, 2021
View Discussion
Improve Article
Save Article

In this article, we are going to filter the rows based on column values in PySpark dataframe.

Creating Dataframe for demonstration:

Python3




# importing module
import spark
  
# importing sparksession from pyspark.sql module
from pyspark.sql import SparkSession
  
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
  
# list  of employee data
data = [["1", "sravan", "company 1"],
        ["2", "ojaswi", "company 1"],
        ["3", "rohith", "company 2"],
        ["4", "sridevi", "company 1"],
        ["1", "sravan", "company 1"],
        ["4", "sridevi", "company 1"]]
  
# specify column names
columns = ['ID', 'NAME', 'Company']
  
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data, columns)
  
dataframe.show()

Output:

Method 1: Using where() function

This function is used to check the condition and give the results

Syntax: dataframe.where(condition)

We are going to filter the rows by using column values through the condition, where the condition is the dataframe condition

Example 1: filter rows in dataframe where ID =1

Python3




# get the data where ID=1
dataframe.where(dataframe.ID=='1').show()

Output:

Example 2:

Python3




# get the data where name not 'sravan'
dataframe.where(dataframe.NAME != 'sravan').show()

Output:

Example 3: Where clause multiple column values filtering.

Python program to filter rows where ID greater than 2 and college is vvit

Python3




# filter rows where ID greater than 2
# and college is vvit
dataframe.where((dataframe.ID>'2') & (dataframe.college=='vvit')).show()

Output:

Method 2: Using filter() function

This function is used to check the condition and give the results.

Syntax: dataframe.filter(condition)

Example 1: Python code to get column value = vvit college

Python3




# get the data where college is  'vvit'
dataframe.filter(dataframe.college=='vvit').show()

Output:

Example 2: filter the data where id > 3.

Python3




# get the data where id > 3
dataframe.filter(dataframe.ID>'3').show()

Output:

Example 3: Multiple column value filtering.

Python program to filter rows where ID greater than 2 and college is vignan

Python3




# filter rows where ID greater
# than 2 and college is vignan
dataframe.filter((dataframe.ID>'2') &
                 (dataframe.college=='vignan')).show()

Output:


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!