Expedia Coding Round Experience – Intern 2021
Coding problems for Expedia Inten 2021: There were 2 coding questions and 6 MCQ’s for the coding round of the Expedia 2021 Intern Round.
Question 1: A number of ways to divide objects into groups, such that no group will have fewer objects than previously formed groups?
Example:
objects=8, groups=4 Answer: 5 [1,1,1,5], [1,1,2,4], [1,1,3,3], [1,2,2,3], [2,2,2,2] Input: 8 4 Output: 5
Solution:
Simple Approach: This problem can be solved by using recursion.
C++
// C++ program to count the // number of ways to divide objetcs in // groups. #include <bits/stdc++.h> using namespace std; // Function to count the number // of ways to divide the number objects // in groups. int count( int pos, int prev, int objects, int groups) { if (pos == groups) { if (objects == 0) return 1; else return 0; } // if objects is divides completely // into less than groups if (objects == 0) return 0; int solution = 0; // put all possible values // greater equal to prev for ( int i = prev; i <= objects; i++) { solution += count(pos + 1, i, objects - i, groups); } return solution; } // Function to count the number of // ways to divide into objects int WaysToGo( int objects, int groups) { return count(0, 1, objects, groups); } // Main Code int main() { int objects, groups; objects = 8; groups = 4; cout << WaysToGo(objects, groups); return 0; } |
Time complexity: O(ObjectGroups)
Dynamic Approach: The above approach will fail as time complexity will exceed, so we will apply Dynamic Programming.
C++
// C++ implementation to count the // number of ways to divide objects in // groups. #include <bits/stdc++.h> using namespace std; // DP 3DArray int dp[500][500][500]; // Function to count the number // of ways to divide the objects // in groups. int count( int pos, int prev, int objects, int groups) { // Base Case if (pos == groups) { if (left == 0) return 1; else return 0; } // if objects is divides completely // into groups if (objects == 0) return 0; // If the subproblem has been // solved, use the value if (dp[pos][prev][objects] != -1) return dp[pos][prev][objects]; int solution = 0; // put all possible values // greater equal to prev for ( int i = prev; i <= objects; i++) { solution += count(pos + 1, i, objects - i, groups); } return dp[pos][prev][objects] = solution; } // Function to count the number of // ways to divide into groups int WaystoDivide( int objects, int groups) { // Initialize DP Table as -1 memset (dp, -1, sizeof (dp)); return count(0, 1, objects, groups); } // Main Code int main() { int objects, groups; objects = 8; groups = 4; cout << WaystoDivide(objects, groups); return 0; } |
Question 2: Minimum number of distinct elements after removing m items
Given an array of items, and i-th index element denotes the item id’s and given a number m, the task is to remove m elements such that there should be minimum distinct id’s left. Print the number of distinct IDs.
Examples:
Input : arr[] = { 2, 2, 1, 3, 3, 3} m = 3 Output : 1
Remove 1 and both 2's.So, only 3 will be left that's why distinct id is 1. Input : arr[] = { 2, 4, 1, 5, 3, 5, 1, 3} m = 2 Output : 3 Remove 2 and 4 completely. So, remaining ids are 1, 3 and 5 i.e. 3
C++
#include <bits/stdc++.h> using namespace std; // Function to find distintc id's int distIds( int a[], int n, int m) { unordered_map< int , int > mi; vector<pair< int , int > > v; int count = 0; // Store the occurrence of ids for ( int i = 0; i < n; i++) mi[a[i]]++; // Store into the vector second as first and vice-versa for ( auto it = mi.begin(); it != mi.end(); it++) v.push_back(make_pair(it->second, it->first)); // Sort the vector sort(v.begin(), v.end()); int size = v.size(); // Start removing elements from the beginning for ( int i = 0; i < size; i++) { // Remove if current value is less than // or equal to m if (v[i].first <= m) { m -= v[i].first; count++; } // Return the remaining size else return size - count; } return size - count; } // Main code int main() { int arr[] = { 2, 3, 1, 2, 3, 3 }; int n = sizeof (arr) / sizeof (arr[0]); int m = 3; cout << distIds(arr, n, m); return 0; } |
Time Complexity: O(n log n)
Please Login to comment...