Open In App
Related Articles

Drop One or Multiple Columns From PySpark DataFrame

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

In this article, we will discuss how to drop columns in the Pyspark dataframe.

In pyspark the drop() function can be used to remove values/columns from the dataframe.

Syntax: dataframe_name.na.drop(how=”any/all”,thresh=threshold_value,subset=[“column_name_1″,”column_name_2”])

  • how – This takes either of the two values ‘any’ or ‘all’.  ‘any’, drop a row if it contains NULLs on any columns and ‘all’, drop a row only if all columns have NULL values. By default it is set to ‘any’
  • thresh – This takes an integer value and drops rows that have less than that thresh hold non-null values. By default it is set to ‘None’.
  • subset – This parameter is used to select a specific column to target the NULL values in it. By default it’s ‘None

Python code to create student dataframe with three columns:

Python3

# importing module
import pyspark
  
# importing sparksession from pyspark.sql module
from pyspark.sql import SparkSession
  
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
  
# list  of employee data with 5 row values
data =[["1", "sravan", "company 1"],
       ["3", "bobby", "company 3"],
       ["2", "ojaswi", "company 2"],
       ["1", "sravan", "company 1"],
       ["3", "bobby", "company 3"],
       ["4", "rohith", "company 2"],
       ["5", "gnanesh", "company 1"]]
  
# specify column names
columns = ['Employee ID','Employee NAME','Company Name']
  
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data,columns)
  
dataframe.show()

                    

Output:

+-----------+-------------+------------+
|Employee ID|Employee NAME|Company Name|
+-----------+-------------+------------+
|          1|       sravan|   company 1|
|          3|        bobby|   company 3|
|          2|       ojaswi|   company 2|
|          1|       sravan|   company 1|
|          3|        bobby|   company 3|
|          4|       rohith|   company 2|
|          5|      gnanesh|   company 1|
+-----------+-------------+------------+

Example 1: Delete a single column.

Here we are going to delete a single column from the dataframe.

Syntax: dataframe.drop(‘column name’)

Code:

Python3

# delete single column
dataframe = dataframe.drop('Employee ID')
dataframe.show()

                    

Output:

+-------------+------------+
|Employee NAME|Company Name|
+-------------+------------+
|       sravan|   company 1|
|        bobby|   company 3|
|       ojaswi|   company 2|
|       sravan|   company 1|
|        bobby|   company 3|
|       rohith|   company 2|
|      gnanesh|   company 1|
+-------------+------------+Example 2:

Example 2: Delete multiple columns.

Here we will delete multiple columns from the dataframe.

Syntax: dataframe.drop(*(‘column 1′,’column 2′,’column n’))

Code:

Python3

# delete two columns
dataframe = dataframe.drop(*('Employee NAME',
                             'Employee ID'))
dataframe.show()

                    

Output:

+------------+
|Company Name|
+------------+
|   company 1|
|   company 3|
|   company 2|
|   company 1|
|   company 3|
|   company 2|
|   company 1|
+------------+

Example 3: Delete all columns

Here we will delete all the columns from the dataframe, for this we will take column’s name as a list and pass it into drop().

Python3

list = ['Employee ID','Employee NAME','Company Name']
  
# delete two columns
dataframe = dataframe.drop(*list)
dataframe.show()

                    

Output:

++
||
++
||
||
||
||
||
||
||
++


Last Updated : 17 Jun, 2021
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads