Skip to content
Related Articles

Related Articles

Improve Article

Drop One or Multiple Columns From PySpark DataFrame

  • Last Updated : 17 Jun, 2021

In this article, we will discuss how to drop columns in the Pyspark dataframe.

In pyspark the drop() function can be used to remove values/columns from the dataframe.

Syntax: dataframe_name.na.drop(how=”any/all”,thresh=threshold_value,subset=[“column_name_1″,”column_name_2”])

  • how – This takes either of the two values ‘any’ or ‘all’.  ‘any’, drop a row if it contains NULLs on any columns and ‘all’, drop a row only if all columns have NULL values. By default it is set to ‘any’
  • thresh – This takes an integer value and drops rows that have less than that thresh hold non-null values. By default it is set to ‘None’.
  • subset – This parameter is used to select a specific column to target the NULL values in it. By default it’s ‘None

Python code to create student dataframe with three columns:

Python3




# importing module
import pyspark
  
# importing sparksession from pyspark.sql module
from pyspark.sql import SparkSession
  
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
  
# list  of employee data with 5 row values
data =[["1", "sravan", "company 1"],
       ["3", "bobby", "company 3"],
       ["2", "ojaswi", "company 2"],
       ["1", "sravan", "company 1"],
       ["3", "bobby", "company 3"],
       ["4", "rohith", "company 2"],
       ["5", "gnanesh", "company 1"]]
  
# specify column names
columns = ['Employee ID','Employee NAME','Company Name']
  
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data,columns)
  
dataframe.show()

Output:



+-----------+-------------+------------+
|Employee ID|Employee NAME|Company Name|
+-----------+-------------+------------+
|          1|       sravan|   company 1|
|          3|        bobby|   company 3|
|          2|       ojaswi|   company 2|
|          1|       sravan|   company 1|
|          3|        bobby|   company 3|
|          4|       rohith|   company 2|
|          5|      gnanesh|   company 1|
+-----------+-------------+------------+

Example 1: Delete a single column.

Here we are going to delete a single column from the dataframe.

Syntax: dataframe.drop(‘column name’)

Code:

Python3




# delete single column
dataframe = dataframe.drop('Employee ID')
dataframe.show()

Output:

+-------------+------------+
|Employee NAME|Company Name|
+-------------+------------+
|       sravan|   company 1|
|        bobby|   company 3|
|       ojaswi|   company 2|
|       sravan|   company 1|
|        bobby|   company 3|
|       rohith|   company 2|
|      gnanesh|   company 1|
+-------------+------------+Example 2:

Example 2: Delete multiple columns.

Here we will delete multiple columns from the dataframe.



Syntax: dataframe.drop(*(‘column 1′,’column 2′,’column n’))

Code:

Python3




# delete two columns
dataframe = dataframe.drop(*('Employee NAME',
                             'Employee ID'))
dataframe.show()

Output:

+------------+
|Company Name|
+------------+
|   company 1|
|   company 3|
|   company 2|
|   company 1|
|   company 3|
|   company 2|
|   company 1|
+------------+

Example 3: Delete all columns

Here we will delete all the columns from the dataframe, for this we will take column’s name as a list and pass it into drop().

Python3




list = ['Employee ID','Employee NAME','Company Name']
  
# delete two columns
dataframe = dataframe.drop(*list)
dataframe.show()

Output:

++
||
++
||
||
||
||
||
||
||
++

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :