Dominant Set of a Graph

In graph theory, a dominating set for a graph G = (V, E) is a subset D of V such that every vertex not in D is adjacent to at least one member of D. The domination number is the number of vertices in a smallest dominating set for G.

Examples:

Input :   A graph with 4 vertex and 4 edges   
Output :  The Dominant Set S= { a, b } or { a, d } or { a, c } and more.

Input : A graph with 6 vertex and 7 edges   
Output :  The Dominant Set S= { a, d, f } or { e, c } and more.

It is believed that there may be no efficient algorithm that finds a smallest dominating set for all graphs, but there are efficient approximation algorithms.
Algorithm :

  • First we have to initialize a set ‘S’ as empty
  • Take any edge ‘e’ of the graph connecting the vertices ( say A and B )
  • Add one vertex between A and B ( let say A ) to our set S
  • Delete all the edges in the graph connected to A
  • Go back to step 2 and repeat, if some edge is still left in the graph
  • The final set S is a Dominant Set of the graph

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find the Dominant Set of a graph
#include <bits/stdc++.h>
using namespace std;
  
vector<vector<int> > g;
bool box[100000];
  
vector<int> Dominant(int ver, int edge)
{
    vector<int> S; // set S
    for (int i = 0; i < ver; i++) {
        if (!box[i]) {
            S.push_back(i);
            box[i] = true;
            for (int j = 0; j < (int)g[i].size(); j++) {
                if (!box[g[i][j]]) {
                    box[g[i][j]] = true;
                    break;
                }
            }
        }
    }
    return S;
}
  
// Driver function
int main()
{
    int ver, edge, x, y;
  
    ver = 5; // Enter number of vertices
    edge = 6; // Enter number of Edges
    g.resize(ver);
  
    // Setting all index value of an array as 0
    memset(box, 0, sizeof(box)); 
  
    // Enter all the end-points of all the Edges
    // g[x--].push_back[y--]      g[y--].push_back[x--]
    g[0].push_back(1);
    g[1].push_back(0); // x = 1, y = 2 ;
    g[1].push_back(2);
    g[2].push_back(1); // x = 2, y = 3 ;
    g[2].push_back(3);
    g[3].push_back(2); // x = 3, y = 4 ;
    g[0].push_back(3);
    g[3].push_back(0); // x = 1, y = 4 ;
    g[3].push_back(4);
    g[4].push_back(3); // x = 4, y = 5 ;
    g[2].push_back(4);
    g[4].push_back(2); // x = 3, y = 5 ;
  
    vector<int> S = Dominant(ver, edge);
    cout << "The Dominant Set is : { ";
    for (int i = 0; i < (int)S.size(); i++)
        cout << S[i] + 1 << " ";
    cout << "}";
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the Dominant Set of a graph
import java.util.*;
  
class GFG
{
  
static Vector<Integer> []g;
static boolean []box = new boolean[100000];
  
static Vector<Integer> Dominant(int ver, int edge)
{
    Vector<Integer> S = new Vector<Integer>(); // set S
    for (int i = 0; i < ver; i++) 
    {
        if (!box[i]) 
        {
            S.add(i);
            box[i] = true;
            for (int j = 0; j < (int)g[i].size(); j++) 
            {
                if (!box[g[i].get(j)])
                {
                    box[g[i].get(j)] = true;
                    break;
                }
            }
        }
    }
    return S;
}
  
// Driver code
public static void main(String[] args)
{
    int ver, edge, x, y;
  
    ver = 5; // Enter number of vertices
    edge = 6; // Enter number of Edges
    g = new Vector[ver];
    for (int i = 0; i < ver; i++)
        g[i] = new Vector<Integer>();
  
  
    // Enter all the end-points of all the Edges
    // g[x--].push_back[y--]     g[y--].push_back[x--]
    g[0].add(1);
    g[1].add(0); // x = 1, y = 2 ;
    g[1].add(2);
    g[2].add(1); // x = 2, y = 3 ;
    g[2].add(3);
    g[3].add(2); // x = 3, y = 4 ;
    g[0].add(3);
    g[3].add(0); // x = 1, y = 4 ;
    g[3].add(4);
    g[4].add(3); // x = 4, y = 5 ;
    g[2].add(4);
    g[4].add(2); // x = 3, y = 5 ;
  
    Vector<Integer> S = Dominant(ver, edge);
    System.out.print("The Dominant Set is : { ");
    for (int i = 0; i < (int)S.size(); i++)
        System.out.print(S.get(i) + 1 + " ");
    System.out.print("}");
}
}
  
// This code is contributed by Rajput-Ji

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the Dominant Set of a graph
using System;
using System.Collections.Generic;
  
class GFG
{
  
static List<int> []g;
static bool []box = new bool[100000];
  
static List<int> Dominant(int ver, int edge)
{
    List<int> S = new List<int>(); // set S
    for (int i = 0; i < ver; i++) 
    {
        if (!box[i]) 
        {
            S.Add(i);
            box[i] = true;
            for (int j = 0; j < (int)g[i].Count; j++) 
            {
                if (!box[g[i][j]])
                {
                    box[g[i][j]] = true;
                    break;
                }
            }
        }
    }
    return S;
}
  
// Driver code
public static void Main(String[] args)
{
    int ver, edge;
  
    ver = 5; // Enter number of vertices
    edge = 6; // Enter number of Edges
    g = new List<int>[ver];
    for (int i = 0; i < ver; i++)
        g[i] = new List<int>();
  
    // Enter all the end-points of all the Edges
    // g[x--].push_back[y--]     g[y--].push_back[x--]
    g[0].Add(1);
    g[1].Add(0); // x = 1, y = 2 ;
    g[1].Add(2);
    g[2].Add(1); // x = 2, y = 3 ;
    g[2].Add(3);
    g[3].Add(2); // x = 3, y = 4 ;
    g[0].Add(3);
    g[3].Add(0); // x = 1, y = 4 ;
    g[3].Add(4);
    g[4].Add(3); // x = 4, y = 5 ;
    g[2].Add(4);
    g[4].Add(2); // x = 3, y = 5 ;
  
    List<int> S = Dominant(ver, edge);
    Console.Write("The Dominant Set is : { ");
    for (int i = 0; i < (int)S.Count; i++)
        Console.Write(S[i] + 1 + " ");
    Console.Write("}");
}
}
  
// This code is contributed by PrinciRaj1992

chevron_right


Output:

The Dominant Set is : { 1 3 5 }

Reference : wiki

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Rajput-Ji, princiraj1992

Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.