Divide first N natural numbers into 3 equal sum subsets

Given an integer N, the task is to check whether the elements from the range [1, N] can be divided into three non-empty equal sum subsets. If possible then print Yes else print No.

Examples:

Input: N = 5
Output: Yes
The possible subsets are {1, 4}, {2, 3} and {5}.
(1 + 4) = (2 + 3) = (5)



Input: N = 3
Output: No

Approach: There are two cases:

  1. If N ≤ 3: In this case, it is not possible to divide the elements in the subsets that satisfy the given condition. So, print No.
  2. If N > 3: In this case, it is only possible when the sum of all the elements of the range [1, N] is divisible by 3 which can be easily calculated as sum = (N * (N + 1)) / 2. Now, if sum % 3 = 0 then print Yes else print No.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <iostream>
using namespace std;
  
// Function that returns true
// if the subsets are possible
bool possible(int n)
{
  
    // If n <= 3 then it is not possible
    // to divide the elements in three subsets
    // satisfying the given conditions
    if (n > 3) {
  
        // Sum of all the elements
        // in the range [1, n]
        int sum = (n * (n + 1)) / 2;
  
        // If the sum is divisible by 3
        // then it is possible
        if (sum % 3 == 0) {
            return true;
        }
    }
    return false;
}
  
// Driver code
int main()
{
    int n = 5;
  
    if (possible(n))
        cout << "Yes";
    else
        cout << "No";
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach 
import java.math.*;
  
class GFG
{
  
    // Function that returns true 
    // if the subsets are possible 
    public static boolean possible(int n) 
    
      
        // If n <= 3 then it is not possible 
        // to divide the elements in three subsets 
        // satisfying the given conditions 
        if (n > 3
        
      
            // Sum of all the elements 
            // in the range [1, n] 
            int sum = (n * (n + 1)) / 2
      
            // If the sum is divisible by 3 
            // then it is possible 
            if (sum % 3 == 0
            
                return true
            
        
        return false
    
  
    // Driver code 
    public static void main(String[] args) 
    
        int n = 5
  
        if (possible(n)) 
            System.out.println("Yes"); 
        else
            System.out.println("No");
    }
}
  
// This code is contributed by Naman_Garg

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Function that returns true 
# if the subsets are possible 
def possible(n) : 
  
    # If n <= 3 then it is not possible 
    # to divide the elements in three subsets 
    # satisfying the given conditions 
    if (n > 3) :
  
        # Sum of all the elements 
        # in the range [1, n] 
        sum = (n * (n + 1)) // 2
  
        # If the sum is divisible by 3 
        # then it is possible 
        if (sum % 3 == 0) :
            return True
      
    return False
  
# Driver code 
if __name__ == "__main__"
  
    n = 5
  
    if (possible(n)) :
        print("Yes"); 
    else :
        print("No"); 
          
# This code is contributed by AnkitRai01

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach 
using System;
  
class GFG
{
      
// Function that returns true 
// if the subsets are possible 
public static bool possible(int n) 
  
    // If n <= 3 then it is not possible 
    // to divide the elements in three subsets 
    // satisfying the given conditions 
    if (n > 3) 
    
  
        // Sum of all the elements 
        // in the range [1, n] 
        int sum = (n * (n + 1)) / 2; 
  
        // If the sum is divisible by 3 
        // then it is possible 
        if (sum % 3 == 0) 
        
            return true
        
    
    return false
  
// Driver code 
static public void Main ()
{
    int n = 5; 
  
    if (possible(n)) 
        Console.Write("Yes"); 
    else
        Console.Write("No");
}
}
  
// This code is contributed by ajit

chevron_right


Output:

Yes


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : AnkitRai01, Naman_Garg, jit_t