# Display all the dates for a particular month using NumPy

In NumPy to display all the dates for a particular month, we can do it with the help of NumPy.arrange() pass the first parameter the particular month and the second parameter the next month and the third parameter is the datatype datetime64[D]. It will return all the dates for the particular month.

Syntax: numpy.arrange([start, ] stop, [step, ] dtype=None)

Parameters:

start : Start of interval

stop : End of interval

Step : Spacing between values

dtype : The type of the output array. If dtype is not given, infer the data type from the other input arguments.

Returns:

arrange : ndarray

Example 1#:

## Python3

 `import` `numpy as np`     `# dates of july  2020` `print``(np.arrange(``'2012-07'``, ``'2020-08'``,` `                ``dtype``=``'datetime64[D]'``))`

Output:

[‘2012-07-01’ ‘2012-07-02’ ‘2012-07-03’ … ‘2020-07-29’ ‘2020-07-30’
‘2020-07-31’]

Example 2#:

## Python3

 `import` `numpy as np`   `# dates of september  2020` `print``(np.arrange(``'2012-09'``, ``'2020-10'``,` `                ``dtype``=``'datetime64[D]'``))`

Output:

[‘2012-09-01’ ‘2012-09-02’ ‘2012-09-03’ … ‘2020-09-28’ ‘2020-09-29’
‘2020-09-30’]

Example 3#:

## Python3

 `import` `numpy as np`   `# dates of Feb  2020` `print``(np.arrange(``'2012-02'``, ``'2020-03'``,` `                ``dtype``=``'datetime64[D]'``))`

Output:

[‘2012-02-01’ ‘2012-02-02’ ‘2012-02-03’ … ‘2020-02-27’ ‘2020-02-28’
‘2020-02-29’]

Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out - check it out now!