Difference Array | Range update query in O(1)
Consider an array A[] of integers and following two types of queries.
- update(l, r, x) : Adds x to all values from A[l] to A[r] (both inclusive).
- printArray() : Prints the current modified array.
Examples :
Input : A [] { 10, 5, 20, 40 } update(0, 1, 10) printArray() update(1, 3, 20) update(2, 2, 30) printArray() Output : 20 15 20 40 20 35 70 60 Explanation : The query update(0, 1, 10) adds 10 to A[0] and A[1]. After update, A[] becomes {20, 15, 20, 40} Query update(1, 3, 20) adds 20 to A[1], A[2] and A[3]. After update, A[] becomes {20, 35, 40, 60}. Query update(2, 2, 30) adds 30 to A[2]. After update, A[] becomes {20, 35, 70, 60}.
A simple solution is to do following :
- update(l, r, x) : Run a loop from l to r and add x to all elements from A[l] to A[r]
- printArray() : Simply print A[].
Time complexities of both of the above operations is O(n)
An efficient solution is to use difference array.
Difference array D[i] of a given array A[i] is defined as D[i] = A[i]-A[i-1] (for 0 < i < N ) and D[0] = A[0] considering 0 based indexing. Difference array can be used to perform range update queries "l r x" where l is left index, r is right index and x is value to be added and after all queries you can return original array from it. Where update range operations can be performed in O(1) complexity.
- update(l, r, x) : Add x to D[l] and subtract it from D[r+1], i.e., we do D[l] += x, D[r+1] -= x
- printArray() : Do A[0] = D[0] and print it. Fir rest of the elements, do A[i] = A[i-1] + D[i] and print them.
Time complexity of update here is improved to O(1). Note that printArray() still takes O(n) time.
C++
// C++ code to demonstrate Difference Array #include <bits/stdc++.h> using namespace std; // Creates a diff array D[] for A[] and returns // it after filling initial values. vector< int > initializeDiffArray(vector< int >& A) { int n = A.size(); // We use one extra space because // update(l, r, x) updates D[r+1] vector< int > D(n + 1); D[0] = A[0], D[n] = 0; for ( int i = 1; i < n; i++) D[i] = A[i] - A[i - 1]; return D; } // Does range update void update(vector< int >& D, int l, int r, int x) { D[l] += x; D[r + 1] -= x; } // Prints updated Array int printArray(vector< int >& A, vector< int >& D) { for ( int i = 0; i < A.size(); i++) { if (i == 0) A[i] = D[i]; // Note that A[0] or D[0] decides // values of rest of the elements. else A[i] = D[i] + A[i - 1]; cout << A[i] << " " ; } cout << endl; } // Driver Code int main() { // Array to be updated vector< int > A{ 10, 5, 20, 40 }; // Create and fill difference Array vector< int > D = initializeDiffArray(A); // After below update(l, r, x), the // elements should become 20, 15, 20, 40 update(D, 0, 1, 10); printArray(A, D); // After below updates, the // array should become 30, 35, 70, 60 update(D, 1, 3, 20); update(D, 2, 2, 30); printArray(A, D); return 0; } |
Java
// Java code to demonstrate Difference Array class GFG { // Creates a diff array D[] for A[] and returns // it after filling initial values. static void initializeDiffArray( int A[], int D[]) { int n = A.length; D[ 0 ] = A[ 0 ]; D[n] = 0 ; for ( int i = 1 ; i < n; i++) D[i] = A[i] - A[i - 1 ]; } // Does range update static void update( int D[], int l, int r, int x) { D[l] += x; D[r + 1 ] -= x; } // Prints updated Array static int printArray( int A[], int D[]) { for ( int i = 0 ; i < A.length; i++) { if (i == 0 ) A[i] = D[i]; // Note that A[0] or D[0] decides // values of rest of the elements. else A[i] = D[i] + A[i - 1 ]; System.out.print(A[i] + " " ); } System.out.println(); return 0 ; } // Driver Code public static void main(String[] args) { // Array to be updated int A[] = { 10 , 5 , 20 , 40 }; int n = A.length; // Create and fill difference Array // We use one extra space because // update(l, r, x) updates D[r+1] int D[] = new int [n + 1 ]; initializeDiffArray(A, D); // After below update(l, r, x), the // elements should become 20, 15, 20, 40 update(D, 0 , 1 , 10 ); printArray(A, D); // After below updates, the // array should become 30, 35, 70, 60 update(D, 1 , 3 , 20 ); update(D, 2 , 2 , 30 ); printArray(A, D); } } // This code is contributed by Anant Agarwal. |
Python3
# Python3 code to demonstrate Difference Array # Creates a diff array D[] for A[] and returns # it after filling initial values. def initializeDiffArray( A): n = len (A) # We use one extra space because # update(l, r, x) updates D[r+1] D = [ 0 for i in range ( 0 , n + 1 )] D[ 0 ] = A[ 0 ]; D[n] = 0 for i in range ( 1 , n ): D[i] = A[i] - A[i - 1 ] return D # Does range update def update(D, l, r, x): D[l] + = x D[r + 1 ] - = x # Prints updated Array def printArray(A, D): for i in range ( 0 , len (A)): if (i = = 0 ): A[i] = D[i] # Note that A[0] or D[0] decides # values of rest of the elements. else : A[i] = D[i] + A[i - 1 ] print (A[i], end = " " ) print ("") # Driver Code A = [ 10 , 5 , 20 , 40 ] # Create and fill difference Array D = initializeDiffArray(A) # After below update(l, r, x), the # elements should become 20, 15, 20, 40 update(D, 0 , 1 , 10 ) printArray(A, D) # After below updates, the # array should become 30, 35, 70, 60 update(D, 1 , 3 , 20 ) update(D, 2 , 2 , 30 ) printArray(A, D) # This code is contributed by Gitanjali. |
C#
// C# code to demonstrate Difference Array using System; class GFG { // Creates a diff array D[] for A[] and returns // it after filling initial values. static void initializeDiffArray( int []A, int []D) { int n = A.Length; D[0] = A[0]; D[n] = 0; for ( int i = 1; i < n; i++) D[i] = A[i] - A[i - 1]; } // Does range update static void update( int []D, int l, int r, int x) { D[l] += x; D[r + 1] -= x; } // Prints updated Array static int printArray( int []A, int []D) { for ( int i = 0; i < A.Length; i++) { if (i == 0) A[i] = D[i]; // Note that A[0] or D[0] decides // values of rest of the elements. else A[i] = D[i] + A[i - 1]; Console.Write(A[i] + " " ); } Console.WriteLine(); return 0; } // Driver Code public static void Main() { // Array to be updated int []A = { 10, 5, 20, 40 }; int n = A.Length; // Create and fill difference Array // We use one extra space because // update(l, r, x) updates D[r+1] int []D = new int [n + 1]; initializeDiffArray(A, D); // After below update(l, r, x), the // elements should become 20, 15, 20, 40 update(D, 0, 1, 10); printArray(A, D); // After below updates, the // array should become 30, 35, 70, 60 update(D, 1, 3, 20); update(D, 2, 2, 30); printArray(A, D); } } // This code is contributed by vt_m. |
Output:
20 15 20 40 20 35 70 60
Recommended Posts:
- Range and Update Query for Chessboard Pieces
- Segment Tree | Set 2 (Range Maximum Query with Node Update)
- Iterative Segment Tree (Range Maximum Query with Node Update)
- Binary Indexed Tree : Range Update and Range Queries
- Range Query on array whose each element is XOR of index value and previous element
- Range and Update Sum Queries with Factorial
- Range Sum Queries and Update with Square Root
- Range query for count of set bits
- Range sum query using Sparse Table
- Range query for Largest Sum Contiguous Subarray
- Number of prefix sum prime in given range query
- Segment Tree | Set 2 (Range Minimum Query)
- Iterative Segment Tree (Range Minimum Query)
- Pair with minimum absolute difference after solving each query
- Range Minimum Query (Square Root Decomposition and Sparse Table)
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.