Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count pairs having distinct sum from a given range

  • Last Updated : 30 Jun, 2021

Given two positive integers L and R, the task is to find the number of pairs with elements from the range [L, R], whose sums are distinct.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

Input: L = 2, R = 3
Output: 3
Explanation: 
All possible pairs with elements from the range [2, 3] are {(2, 2), (2, 3), (3, 2), (3, 3)}. Since sum of the pairs (2, 3) and (3, 2) are equal, the count of pairs with distinct sum is 3.

Input: L = 2, R = 2
Output: 1



Approach: Follow the steps below to solve the problem:

  • Initialize a variable, say firstNum, to store the least sum that can be obtained by the pairs, i.e. 2 * L.
  • Initialize a variable, say lastNum, to store the highest sum which can be obtained by the pairs, i.e. 2 * R.
  • Initialize a variable, say cntPairs, to store the count of pairs having distinct sum, i.e. lastNum – firstNum + 1.
  • Finally, print the value of cntPairs.

Below is the implementation of the above approach:

C++




// C++ program for
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count pairs made
// up of elements from the range
// [L, R] having distinct sum
long countPairs(long L, long R)
{
 
    // Stores the least sum which
    // can be formed by the pairs
    long firstNum = 2 * L;
 
    // Stores the highest sum which
    // can be formed by the pairs
    long lastNum = 2 * R;
 
    // Stores the count of pairs
    // having distinct sum
    long Cntpairs = lastNum - firstNum + 1;
 
    // Print the count of pairs
    cout << Cntpairs;
}
 
// Driver Code
int main()
{
    long L = 2, R = 3;
 
    // Function call to count
    // the number of pairs
    // having distinct sum in
    // the range [L, R]
    countPairs(L, R);
 
    return 0;
}

Java




// Java program for
// the above approach
 
import java.io.*;
 
class GFG {
 
    // Function to count pairs made
    // up of elements from the range
    // [L, R] having distinct sum
    static void countPairs(long L, long R)
    {
 
        // Stores the least sum which
        // can be formed by the pairs
        long firstNum = 2 * L;
 
        // Stores the highest sum which
        // can be formed by the pairs
        long lastNum = 2 * R;
 
        // Stores the count of pairs
        // having distinct sum
        long Cntpairs = lastNum - firstNum + 1;
 
        // Print the count of pairs
        System.out.println(Cntpairs);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        long L = 2, R = 3;
 
        // Function call to count
        // the number of pairs
        // having distinct sum in
        // the range [L, R]
        countPairs(L, R);
    }
}

Python3




# Python3 program for
# the above approach
 
# Function to count pairs made
# up of elements from the range
# [L, R] having distinct sum
def countPairs(L, R):
 
    # Stores the least sum which
    # can be formed by the pairs
    firstNum = 2 * L
 
    # Stores the highest sum which
    # can be formed by the pairs
    lastNum = 2 * R
 
    # Stores the count of pairs
    # having distinct sum
    Cntpairs = lastNum - firstNum + 1
 
    # Print the count of pairs
    print (Cntpairs)
 
# Driver Code
if __name__ == '__main__':
    L,R = 2,3
 
    # Function call to count
    # the number of pairs
    # having distinct sum in
    # the range [L, R]
    countPairs(L, R)
 
    # This code is contributed by mohit kumar 29.

C#




// C# program for
// the above approach
 
using System;
 
public class GFG {
 
    // Function to count pairs made
    // up of elements from the range
    // [L, R] having distinct sum
    static void countPairs(long L, long R)
    {
 
        // Stores the least sum which
        // can be formed by the pairs
        long firstNum = 2 * L;
 
        // Stores the highest sum which
        // can be formed by the pairs
        long lastNum = 2 * R;
 
        // Stores the count of pairs
        // having distinct sum
        long Cntpairs = lastNum - firstNum + 1;
 
        Console.WriteLine(Cntpairs);
    }
 
    // Driver Code
    static public void Main()
    {
        long L = 2, R = 3;
 
        // Function call to count
        // the number of pairs
        // having distinct sum in
        // the range [L, R]
        countPairs(L, R);
    }
}

Javascript




<script>
 
// JavaScript program for
// the above approach
 
 
// Function to count pairs made
// up of elements from the range
// [L, R] having distinct sum
 
function countPairs(L,R)
{
    // Stores the least sum which
        // can be formed by the pairs
        let firstNum = 2 * L;
  
        // Stores the highest sum which
        // can be formed by the pairs
        let lastNum = 2 * R;
  
        // Stores the count of pairs
        // having distinct sum
        let Cntpairs = lastNum - firstNum + 1;
  
        // Print the count of pairs
        document.write(Cntpairs+"<br>");
}
 
// Driver Code
let L = 2, R = 3;
  
// Function call to count
// the number of pairs
// having distinct sum in
// the range [L, R]
countPairs(L, R);
 
 
// This code is contributed by unknown2108
 
</script>

 
 

Output: 
3

 

 

Time Complexity: O(1)
Auxiliary Space: O(1)

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!