Open In App
Related Articles

Count of ways to split an Array into three contiguous Subarrays having increasing Sum

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an array arr[] consisting of non-negative integers, the task is to find the number of ways to split the array into three non-empty contiguous subarrays such that their respective sum of elements are in increasing order.

Examples:

Input: arr[] = {2, 3, 1, 7} 
Output:
Explanation: 
{{2}, {3, 1}, {7}}, {{2}, {3}, {1, 7}} are the possible splits.

Input: arr[] = {1, 2, 0} 
Output: 0

Approach: The idea is to use the Prefix and Suffix sum array and Two Pointers technique. Follow the steps below to solve the problem:

  • Generate the prefix sum array and suffix sum array.
  • Initialize two pointers s and e to find the sum of the second subarray.
  • Iterate over the array, increment curr_subarray_sum with arr[e] while curr_subarray_sum less than prefix_sum[s – 1] and keep incrementing e.
  • Whenever curr_subarray_sum is ? prefix_sum[s – 1], then check if curr_subarray_sum is ? suffix_sum[e]. If found to be true, increment count.
  • Reduce curr_subarray_sum by arr[s] and increment s.
  • Repeat the above steps and finally, print count

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
#include<bits/stdc++.h>
using namespace std;
 
// Function to count the number of ways
// to split array into three contiguous
// subarrays of the required type
int findCount(int arr[], int n)
{
 
    // Stores the prefix sums
    int prefix_sum[n];
 
    prefix_sum[0] = arr[0];
 
    for(int i = 1; i < n; i++)
        prefix_sum[i] = prefix_sum[i - 1] + arr[i];
 
    // Stores the suffix sums
    int suffix_sum[n];
 
    suffix_sum[n - 1] = arr[n - 1];
 
    for(int i = n - 2; i >= 0; i--)
        suffix_sum[i] = suffix_sum[i + 1] + arr[i];
 
    int s = 1, e = 1;
    int curr_subarray_sum = 0, count = 0;
 
    // Traverse the given array
    while (s < n - 1 && e < n - 1)
    {
         
        // Updating curr_subarray_sum until
        // it is less than prefix_sum[s-1]
        while (e < n - 1 && curr_subarray_sum <
               prefix_sum[s - 1])
        {
            curr_subarray_sum += arr[e++];
        }
 
        if (curr_subarray_sum <= suffix_sum[e])
        {
             
            // Increase count
            count++;
        }
 
        // Decrease curr_subarray_sum by arr[s[]
        curr_subarray_sum -= arr[s++];
    }
 
    // Return count
    return count;
}
 
// Driver code
int32_t main()
{
    int arr[] = { 2, 3, 1, 7 };
    int n = sizeof arr / sizeof arr[0];
     
    cout << (findCount(arr, n));
}
 
// This code is contributed by Stream_Cipher


Java




// Java Program to implement
// the above approach
import java.io.*;
import java.util.*;
 
class GFG {
 
    // Function to count the number of ways
    // to split array into three contiguous
    // subarrays of the required type
    static int findCount(int arr[], int n)
    {
 
        // Stores the prefix sums
        int[] prefix_sum = new int[n];
 
        prefix_sum[0] = arr[0];
 
        for (int i = 1; i < n; i++)
            prefix_sum[i]
                = prefix_sum[i - 1] + arr[i];
 
        // Stores the suffix sums
        int[] suffix_sum = new int[n];
 
        suffix_sum[n - 1] = arr[n - 1];
 
        for (int i = n - 2; i >= 0; i--)
            suffix_sum[i]
                = suffix_sum[i + 1] + arr[i];
 
        int s = 1, e = 1;
        int curr_subarray_sum = 0, count = 0;
 
        // Traverse the given array
        while (s < n - 1 && e < n - 1) {
 
            // Updating curr_subarray_sum until
            // it is less than prefix_sum[s-1]
            while (e < n - 1
                   && curr_subarray_sum
                          < prefix_sum[s - 1]) {
                curr_subarray_sum += arr[e++];
            }
 
            if (curr_subarray_sum <= suffix_sum[e]) {
                // Increase count
                count++;
            }
 
            // Decrease curr_subarray_sum by arr[s[]
            curr_subarray_sum -= arr[s++];
        }
 
        // Return count
        return count;
    }
 
    // Driver Code
    public static void main(String args[])
    {
 
        int[] arr = { 2, 3, 1, 7 };
        int n = arr.length;
        System.out.println(findCount(arr, n));
    }
}


Python3




# Python3 program to implement
# the above approach
 
# Function to count the number of ways
# to split array into three contiguous
# subarrays of the required type
def findCount(arr, n):
 
    # Stores the prefix sums
    prefix_sum = [0 for x in range(n)]
    prefix_sum[0] = arr[0]
     
    for i in range(1, n):
        prefix_sum[i] = prefix_sum[i - 1] + arr[i]
     
    # Stores the suffix sums
    suffix_sum = [0 for x in range(n)]
     
    suffix_sum[n - 1] = arr[n - 1]
     
    for i in range(n - 2, -1, -1):
        suffix_sum[i] = suffix_sum[i + 1] + arr[i]
     
    s = 1
    e = 1
    curr_subarray_sum = 0
    count = 0
     
    #Traverse the given array
    while (s < n - 1 and e < n - 1):
         
        # Updating curr_subarray_sum until
        # it is less than prefix_sum[s-1]
        while (e < n - 1 and
               curr_subarray_sum < prefix_sum[s - 1]):
            curr_subarray_sum += arr[e]
            e += 1
                 
        if (curr_subarray_sum <= suffix_sum[e]):
             
            # Increase count
            count += 1
                 
        # Decrease curr_subarray_sum by arr[s[]
        curr_subarray_sum -= arr[s]
        s += 1
     
    # Return count
    return count
     
# Driver code
arr = [ 2, 3, 1, 7 ]
n = len(arr)
 
print(findCount(arr, n))
 
# This code is contributed by Stream_Cipher


C#




// C# Program to implement
// the above approach
using System;
class GFG{
 
  // Function to count the number of ways
  // to split array into three contiguous
  // subarrays of the required type
  static int findCount(int []arr, int n)
  {
 
    // Stores the prefix sums
    int[] prefix_sum = new int[n];
 
    prefix_sum[0] = arr[0];
 
    for (int i = 1; i < n; i++)
      prefix_sum[i] = prefix_sum[i - 1] + arr[i];
 
    // Stores the suffix sums
    int[] suffix_sum = new int[n];
 
    suffix_sum[n - 1] = arr[n - 1];
 
    for (int i = n - 2; i >= 0; i--)
      suffix_sum[i] = suffix_sum[i + 1] + arr[i];
 
    int s = 1, e = 1;
    int curr_subarray_sum = 0, count = 0;
 
    // Traverse the given array
    while (s < n - 1 && e < n - 1)
    {
 
      // Updating curr_subarray_sum until
      // it is less than prefix_sum[s-1]
      while (e < n - 1 &&
             curr_subarray_sum < prefix_sum[s - 1])
      {
        curr_subarray_sum += arr[e++];
      }
 
      if (curr_subarray_sum <= suffix_sum[e])
      {
        // Increase count
        count++;
      }
 
      // Decrease curr_subarray_sum by arr[s[]
      curr_subarray_sum -= arr[s++];
    }
 
    // Return count
    return count;
  }
 
  // Driver Code
  public static void Main(String []args)
  {
 
    int[] arr = { 2, 3, 1, 7 };
    int n = arr.Length;
    Console.WriteLine(findCount(arr, n));
  }
}
 
// This code is contributed by Rohit_ranjan


Javascript




<script>
 
// JavaScript program for the above approach
  
   // Function to count the number of ways
    // to split array into three contiguous
    // subarrays of the required type
    function findCount(arr, n)
    {
   
        // Stores the prefix sums
        let prefix_sum = Array.from({length: n},
        (_, i) => 0);
   
        prefix_sum[0] = arr[0];
   
        for (let i = 1; i < n; i++)
            prefix_sum[i]
                = prefix_sum[i - 1] + arr[i];
   
        // Stores the suffix sums
        let suffix_sum = Array.from({length: n},
        (_, i) => 0);
   
        suffix_sum[n - 1] = arr[n - 1];
   
        for (let i = n - 2; i >= 0; i--)
            suffix_sum[i]
                = suffix_sum[i + 1] + arr[i];
   
        let s = 1, e = 1;
        let curr_subarray_sum = 0, count = 0;
   
        // Traverse the given array
        while (s < n - 1 && e < n - 1) {
   
            // Updating curr_subarray_sum until
            // it is less than prefix_sum[s-1]
            while (e < n - 1
                   && curr_subarray_sum
                          < prefix_sum[s - 1]) {
                curr_subarray_sum += arr[e++];
            }
   
            if (curr_subarray_sum <= suffix_sum[e]) {
                // Increase count
                count++;
            }
   
            // Decrease curr_subarray_sum by arr[s[]
            curr_subarray_sum -= arr[s++];
        }
   
        // Return count
        return count;
    }
     
// Driver Code
     
        let arr = [ 2, 3, 1, 7 ];
        let n = arr.length;
        document.write(findCount(arr, n));
      
</script>


Output: 

2

 

Time Complexity: O(N) 
Auxiliary Space: O(N)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 08 Sep, 2021
Like Article
Save Article
Similar Reads
Related Tutorials