Count of unique subsets from a set having repeated elements
Given an array arr[] of size N. The task is to count the number of unique subsets.
Examples:
Input: arr[] = {1, 2, 2}
Output: 6
Explanation: Total possible subsets of this set = 2³= 8.
Following are the all 8 subsets formed from arr[].
{}, {1}, {2}, {2}, {1, 2}, {1, 2}, {2, 2}, {1, 2, 2}.
These are all possible subsets out of which {2} and {1, 2} are repeated.
Therefore there are only 6 unique subsets of given set.Input: arr[] = {1, 3, 3, 4, 4, 4}
Output: 24
Naive Approach: In the basic approach, create all the subsets of the set and keep storing them in a std::set that stores only unique elements. But this isn’t a time-efficient approach.
Time Complexity: O(2N)
Auxiliary Space: O(N * 2N-1)
Efficient Approach: It can be observed that it is not required to find all the subsets. The only concern is to find the count of unique subsets. On the basis of how many times each element is contributing in unique subsets, it can be done by mathematical manipulations and finally ending up with a formula.
Follow the observation below to arrive at the formula.
For each unique value vali say the frequency of that element is freq[vali].
So each unique value has (freq[vali] + 1) to be present in a unique subset
because it can be present 0 times, 1 time, 2 times . . . freq[vali] times in a subset.
Now this is true for all such unique elements.
Therefore, The number of unique subsets of a set = Product of (frequency+1) of each element.
Below is the implementation of the above approach.
C++
// C++ program for above approach #include <bits/stdc++.h> using namespace std; // Function to find number of unique subsets void countNumberofUniqueSubsets( int A[], int N) { // Creating a map to store // frequency of elements map< int , int > m; // Filling map for ( int i = 0; i < N; i++) { // Counting frequency of each elements m[A[i]]++; } // Finding product of (frequency+1) // for each elements int subsets = 1; for ( auto & value : m) subsets *= (value.second + 1); cout << subsets; } // Driver Code int main() { int arr[] = { 1, 2, 2 }; int N = sizeof (arr) / sizeof (arr[0]); // Function Call countNumberofUniqueSubsets(arr, N); return 0; } |
Java
// Java program for the above approach import java.io.*; import java.lang.*; import java.util.*; class GFG { // Function to find number of unique subsets static void countNumberofUniqueSubsets( int A[], int N) { // Creating a map to store // frequency of elements HashMap<Integer, Integer> m = new HashMap<>(); // Filling map for ( int i = 0 ; i < N; i++) { // Counting frequency of each elements if (m.containsKey(A[i])) { m.put(A[i], m.get(A[i]) + 1 ); } else { m.put(A[i], 1 ); } } // Finding product of (frequency+1) // for each elements int subsets = 1 ; for (Map.Entry<Integer, Integer> value : m.entrySet()) subsets *= (value.getValue() + 1 ); System.out.print(subsets); } // Driver Code public static void main (String[] args) { int arr[] = { 1 , 2 , 2 }; int N = arr.length; // Function Call countNumberofUniqueSubsets(arr, N); } } // This code is contributed by hrithikgarg03188. |
Python
# Python code for the above approach # Function to find number of unique subsets def countNumberofUniqueSubsets(A, N): # Creating a map to store # frequency of elements m = dict () # Filling map for i in range (N): # Counting frequency of each elements if (A[i] in m): m[A[i]] + = 1 else : m[A[i]] = 1 # Finding product of (frequency+1) # for each elements subsets = 1 for value in m.values(): subsets = subsets * (value + 1 ) print (subsets) # Driver Code arr = [ 1 , 2 , 2 ] N = len (arr) # Function Call countNumberofUniqueSubsets(arr, N) # This code is contributed by Saurabh Jaiswal |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG { // Function to find number of unique subsets static void countNumberofUniqueSubsets( int []A, int N) { // Creating a map to store // frequency of elements Dictionary< int , int > m = new Dictionary< int , int >(); // Filling map for ( int i = 0; i < N; i++) { // Counting frequency of each elements if (m.ContainsKey(A[i])) { m[A[i]] = m[A[i]] + 1; } else { m.Add(A[i], 1); } } // Finding product of (frequency+1) // for each elements int subsets = 1; foreach (KeyValuePair< int , int > value in m) { subsets *= (value.Value + 1); } Console.Write(subsets); } // Driver Code public static void Main () { int []arr = { 1, 2, 2 }; int N = arr.Length; // Function Call countNumberofUniqueSubsets(arr, N); } } // This code is contributed by Samim Hossain Mondal. |
Javascript
<script> // JavaScript code for the above approach // Function to find number of unique subsets function countNumberofUniqueSubsets(A, N) { // Creating a map to store // frequency of elements let m = new Map(); // Filling map for (let i = 0; i < N; i++) { // Counting frequency of each elements if (m.has(A[i])) { m.set(A[i], m.get(A[i])+ 1) } else { m.set(A[i], 1) } } // Finding product of (frequency+1) // for each elements let subsets = 1; for (let value of m.values()) subsets = subsets * (value + 1); document.write(subsets); } // Driver Code let arr = [1, 2, 2]; let N = arr.length; // Function Call countNumberofUniqueSubsets(arr, N); // This code is contributed by Potta Lokesh </script> |
6
Time Complexity: O(N)
Auxiliary Space: O(N)
Please Login to comment...