Skip to content
Related Articles
Open in App
Not now

Related Articles

Count numbers in range whose sum of digits is divisible by XOR of digits

Improve Article
Save Article
Like Article
  • Difficulty Level : Hard
  • Last Updated : 23 Feb, 2023
Improve Article
Save Article
Like Article

Given integers L and R, the task for this problem is to find a number of integers in the range L to R whose sum of digits is divisible by bitwise XOR of digits. print the answer. ( L <= R <= 1018)

Note: Bitwise XOR sum zero never divides any other number.

Examples:

Input: L = 10, R = 15
Output: 4
Explanation:

  • Number 10 : digitSum = 1 + 0 = 1, xorSum = 1 ^ 0 = 1, included in answer, 1 % 1 = 0
  • Number 11:  digitSum = 1 + 1 = 2, xorSum = 1 ^ 1 = 0, not included in answer since bitwise XOR sum is zero.
  • Number 12:  digitSum = 1 + 2 = 3, xorSum = 1 ^ 2 = 3, included in answer since 2 % 1 = 0
  • Number 13:  digitSum = 1 + 3 = 4, xorSum = 1 ^ 3 = 2, included in answer since 4 % 2 = 0
  • Number 14:  digitSum = 1 + 4 = 5, xorSum = 1 ^ 4 = 5, included in answer since 5 % 5 = 0
  • Number 15:  digitSum = 1 + 5 = 6, xorSum = 1 ^ 5 = 4, not included in answer since 6 % 4 != 0

10, 12, 13 and 14 are the numbers whose sum of digits are divisible by bitwise XOR sum of digits

Input: L = 1, R = 100
Output: 67

Naive approach: The basic way to solve the problem is as follows:

The basic way to solve this problem is to generate all possible combinations by using a recursive approach.

Time Complexity: O(18N), Where N is the number of digits to be filled.
Auxiliary Space: O(1)

Efficient Approach:  Dynamic programming can be used to solve this problem:

  • dp[i][j][k][l] represents numbers in the range with i digits, j represents tight condition, k represents current sum and l represents bitwise XOR sum.
  • It can be observed that the recursive function is called exponential times. That means that some states are called repeatedly. 
  • So the idea is to store the value of each state. This can be done using by storing the value of a state and whenever the function is called, returning the stored value without computing again.
  • First answer will be calculated for 0 to L – 1 and then calculated for 0 to R then the latter one is subtracted from the prior one to get answer for range [L, R].

Follow the steps below to solve the problem:

  • Create a recursive function that takes four parameters i representing the position to be filled, j representing a tight condition, k representing the sum of digits, and finally l containing bitwise XOR sum of digits.
  • Call the recursive function for choosing all digits from 0 to 9.
  • Base case if the size of the digit is N and the sum is divisible by bitwise XOR sum return 1 else returns 0.
  • Create a 4d array  dp[20][2][180][16] initially filled with -1.
  • If the answer for a particular state is computed then save it in dp[i][j][k][l].
  • if the answer for a particular state is already computed then just return dp[i][j][k][l].

Below is the implementation of the above approach:

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
// dp table initialized with -1
int dp[20][2][180][16];
 
// recursive Function to find numbers
// in the range L to R such that digit
// sum is divisible by xor sum of digits.
int recur(int i, int j, int k, int l, string& a)
{
 
    // Base case
    if (i == a.size()) {
 
        // Sum of digits is divisible by
        // xor of digits return 1
        if (l != 0 and k % l == 0)
            return 1;
 
        // Otherwise return 0
        else
            return 0;
    }
 
    // If answer for current state is
    // already calculated then just
    // return dp[i][j][k][l]
    if (dp[i][j][k][l] != -1)
        return dp[i][j][k][l];
 
    // Answer initialized with zero
    int ans = 0;
 
    // Tight condition true
    if (j == 1) {
 
        // Iterating from 0 to max value
        // of tight condition
        for (int digit = 0; digit <= ((int)a[i] - 48);
             digit++) {
 
            // When digit is at max tight
            // condition remains even in
            // next state
            if (digit == ((int)a[i] - 48))
 
                // Calling recursive function
                // for tight digit
                ans += recur(i + 1, 1, k + digit, l ^ digit,
                             a);
 
            // Tight condition drops
            else
 
                // calling recursive function
                // for digits less than tight
                // condition digit
                ans += recur(i + 1, 0, k + digit, l ^ digit,
                             a);
        }
    }
 
    // Tight condition false
    else {
 
        // iterating for all digits
        for (int digit = 0; digit <= 9; digit++) {
 
            // Calling recursive function
            // for all digits from 0 to 9
            ans += recur(i + 1, 0, k + digit, l ^ digit, a);
        }
    }
 
    // save and return dp value
    return dp[i][j][k][l] = ans;
}
 
// Function to find numbers in the
// range L to R such that digit sum
// is divisible by xor sum of digits.
int countInRange(int A, int B)
{
 
    // Initializing dp array with - 1
    memset(dp, -1, sizeof(dp));
 
    A--;
    string L = to_string(A), R = to_string(B);
 
    // Numbers with sum of digits divisible
    // by xor sum of digits
    // in the range 0 to L
    int ans1 = recur(0, 1, 0, 0, L);
 
    // Initializing dp array with - 1
    memset(dp, -1, sizeof(dp));
 
    // Numbers with sum of digits divisible
    // by xor sum of digits
    // in the range 0 to R
    int ans2 = recur(0, 1, 0, 0, R);
 
    // Difference of ans2 and ans1
    // will generate answer for
    // required range
    return ans2 - ans1;
}
 
// Driver Code
int main()
{
 
    // Input 1
    int L = 10, R = 15;
 
    // Function Call
    cout << countInRange(L, R) << endl;
 
    // Input 2
    int L1 = 1, R1 = 100;
 
    // Function Call
    cout << countInRange(L1, R1) << endl;
    return 0;
}

Java




// java code to implement the approach
import java.io.*;
import java.util.*;
 
class GFG {
    // recursive Function to find numbers
    // in the range L to R such that digit
    // sum is divisible by xor sum of digits.
    public static int recur(int[][][][] dp, int i, int j,
                            int k, int l, StringBuilder a)
    {
        // Base Case
        if (i == a.length()) {
 
            // Sum of digits is divisible by
            // xor of digits return 1
            if (l != 0 && k % l == 0)
                return 1;
 
            // Otherwise return 0
            else
                return 0;
        }
 
        // If answer for current state is
        // already calculated then just
        // return dp[i][j][k][l]
        if (dp[i][j][k][l] != -1)
            return dp[i][j][k][l];
 
        // Answer initialized with zero
        int ans = 0;
 
        // Tight condition true
        if (j == 1) {
 
            // Iterating from 0 to max value
            // of tight condition
            for (int digit = 0;
                 digit <= ((int)a.charAt(i) - 48);
                 digit++) {
 
                // When digit is at max tight
                // condition remains even in
                // next state
                if (digit == ((int)a.charAt(i) - 48))
 
                    // Calling recursive function
                    // for tight digit
                    ans += recur(dp, i + 1, 1, k + digit,
                                 (l ^ digit), a);
 
                // Tight condition drops
                else
                    // calling recursive function
                    // for digits less than tight
                    // condition digit
                    ans += recur(dp, i + 1, 0, k + digit,
                                 (l ^ digit), a);
            }
        }
        // Tight condition false
        else {
 
            // iterating for all digits
            for (int digit = 0; digit <= 9; digit++) {
 
                // Calling recursive function
                // for all digits from 0 to 9
                ans += recur(dp, i + 1, 0, k + digit,
                             (l ^ digit), a);
            }
        }
 
        // save and return dp value
        return dp[i][j][k][l] = ans;
    }
 
    // Function to find numbers in the
    // range L to R such that digit sum
    // is divisible by xor sum of digits.
    public static int countInRange(int[][][][] dp, int A,
                                   int B)
    {
        // Initializing dp array with - 1
        for (int i = 0; i < 20; i++) {
            for (int j = 0; j < 2; j++) {
                for (int a = 0; a < 180; a++) {
                    for (int b = 0; b < 16; b++) {
                        dp[i][j][a][b] = -1;
                    }
                }
            }
        }
 
        A--;
        StringBuilder L
            = new StringBuilder(Integer.toString(A));
        StringBuilder R
            = new StringBuilder(Integer.toString(B));
 
        // Numbers with sum of digits divisible
        // by xor sum of digits
        // in the range 0 to L
        int ans1 = recur(dp, 0, 1, 0, 0, L);
 
        // Initializing dp array with - 1
        for (int i = 0; i < 20; i++) {
            for (int j = 0; j < 2; j++) {
                for (int a = 0; a < 180; a++) {
                    for (int b = 0; b < 16; b++) {
                        dp[i][j][a][b] = -1;
                    }
                }
            }
        }
 
        // Numbers with sum of digits divisible
        // by xor sum of digits
        // in the range 0 to R
        int ans2 = recur(dp, 0, 1, 0, 0, R);
 
        // Difference of ans2 and ans1
        // will generate answer for
        // required range
        return ans2 - ans1;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int[][][][] dp = new int[20][2][180][16];
 
        // Input 1
        int L = 10, R = 15;
 
        // Function Call
        System.out.println(countInRange(dp, L, R));
 
        // Input 2
        int L1 = 1, R1 = 100;
 
        // Function Call
        System.out.println(countInRange(dp, L1, R1));
    }
}

Python3




# Python code to implement the approach
  
# dp table initialized with -1
dp = [[[[-1 for l in range(16)] for k in range(180)] for j in range(2)] for i in range(20)]
 
# recursive Function to find numbers
# in the range L to R such that digit
# sum is divisible by xor sum of digits.
def recur(i, j, k, l, a):
 
    # Base case
    if i == len(a):
         
        # Sum of digits is divisible by
        # xor of digits return 1
        if l != 0 and k % l == 0:
            return 1
             
        # Otherwise return 0
        else:
            return 0
     
    # If answer for current state is
    # already calculated then just
    # return dp[i][j][k][l]
    if dp[i][j][k][l] != -1:
        return dp[i][j][k][l]
     
    # Answer initialized with zero
    ans = 0
     
    # Tight condition true
    if j == 1:
         
        # Iterating from 0 to max value
        # of tight condition
        for digit in range(0, int(a[i])+1):
             
            # When digit is at max tight
            # condition remains even in
            # next state
            if digit == int(a[i]):
                 
                # Calling recursive function
                # for tight digit
                ans += recur(i + 1, 1, k + digit, l ^ digit, a)
                 
            # Tight condition drops
            else:
                 
                # calling recursive function
                # for digits less than tight
                # condition digit
                ans += recur(i + 1, 0, k + digit, l ^ digit, a)
                 
    # Tight condition false
    else:
         
        # iterating for all digits
        for digit in range(0, 10):
             
            # Calling recursive function
            # for all digits from 0 to 9
            ans += recur(i + 1, 0, k + digit, l ^ digit, a)
     
    # save and return dp value
    dp[i][j][k][l] = ans
    return ans
     
# Function to find numbers in the
# range L to R such that digit sum
# is divisible by xor sum of digits.
def countInRange(A, B):
     
    # Initializing dp array with - 1
    for i in range(20):
        for j in range(2):
            for k in range(180):
                for l in range(16):
                    dp[i][j][k][l] = -1
    A -= 1
    L = str(A)
    R = str(B)
     
    # Numbers with sum of digits divisible
    # by xor sum of digits
    # in the range 0 to L
    ans1 = recur(0, 1, 0, 0, L)
     
    # Initializing dp array with - 1
    for i in range(20):
        for j in range(2):
            for k in range(180):
                for l in range(16):
                    dp[i][j][k][l] = -1
                     
    # Numbers with sum of digits divisible
    # by xor sum of digits
    # in the range 0 to R
    ans2 = recur(0, 1, 0, 0, R)
     
    # Difference of ans2 and ans1
    # will generate answer for
    # required range
    return ans2 - ans1
     
# Driver Code
# Input 1
L = 10
R = 15
 
# Function Call
print(countInRange(L, R))
 
# Input 2
L1 = 1
R1 = 100
 
# Function Call
print(countInRange(L1, R1))
 
# This code is contributed by Prasad kandekar(prasad264)

C#




// C# code to implement the approach
 
using System;
using System.Text;
 
public class GFG {
 
    // recursive Function to find numbers
    // in the range L to R such that digit
    // sum is divisible by xor sum of digits.
    public static int recur(int[, , , ] dp, int i, int j,
                            int k, int l, StringBuilder a)
    {
        // Base Case
        if (i == a.Length) {
            // Sum of digits is divisible by
            // xor of digits return 1
            if (l != 0 && k % l == 0)
                return 1;
 
            // Otherwise return 0
            else
                return 0;
        }
 
        // If answer for current state is
        // already calculated then just
        // return dp[i][j][k][l]
        if (dp[i, j, k, l] != -1)
            return dp[i, j, k, l];
 
        // Answer initialized with zero
        int ans = 0;
 
        // Tight condition true
        if (j == 1) {
            // Iterating from 0 to max value
            // of tight condition
            for (int digit = 0; digit <= (a[i] - 48);
                 digit++) {
                // When digit is at max tight
                // condition remains even in
                // next state
                if (digit == (a[i] - 48))
 
                    // Calling recursive function
                    // for tight digit
                    ans += recur(dp, i + 1, 1, k + digit,
                                 (l ^ digit), a);
 
                // Tight condition drops
                else
                    // calling recursive function
                    // for digits less than tight
                    // condition digit
                    ans += recur(dp, i + 1, 0, k + digit,
                                 (l ^ digit), a);
            }
        }
        // Tight condition false
        else {
            // iterating for all digits
            for (int digit = 0; digit <= 9; digit++) {
                // Calling recursive function
                // for all digits from 0 to 9
                ans += recur(dp, i + 1, 0, k + digit,
                             (l ^ digit), a);
            }
        }
 
        // save and return dp value
        return dp[i, j, k, l] = ans;
    }
 
    // Function to find numbers in the
    // range L to R such that digit sum
    // is divisible by xor sum of digits.
    public static int countInRange(int[, , , ] dp, int A,
                                   int B)
    {
        // Initializing dp array with - 1
        for (int i = 0; i < 20; i++) {
            for (int j = 0; j < 2; j++) {
                for (int a = 0; a < 180; a++) {
                    for (int b = 0; b < 16; b++) {
                        dp[i, j, a, b] = -1;
                    }
                }
            }
        }
 
        A--;
        StringBuilder L = new StringBuilder(A.ToString());
        StringBuilder R = new StringBuilder(B.ToString());
 
        // Numbers with sum of digits divisible
        // by xor sum of digits
        // in the range 0 to L
        int ans1 = recur(dp, 0, 1, 0, 0, L);
 
        // Initializing dp array with - 1
        for (int i = 0; i < 20; i++) {
            for (int j = 0; j < 2; j++) {
                for (int a = 0; a < 180; a++) {
                    for (int b = 0; b < 16; b++) {
                        dp[i, j, a, b] = -1;
                    }
                }
            }
        }
 
        // Numbers with sum of digits divisible
        // by xor sum of digits
        // in the range 0 to R
        int ans2 = recur(dp, 0, 1, 0, 0, R);
 
        // Difference of ans2 and ans1
        // will generate answer for
        // required range
        return ans2 - ans1;
    }
 
    static public void Main()
    {
 
        // Code
        int[, , , ] dp = new int[20, 2, 180, 16];
 
        // Input 1
        int L = 10, R = 15;
 
        // Function Call
        Console.WriteLine(countInRange(dp, L, R));
 
        // Input 2
        int L1 = 1, R1 = 100;
 
        // Function Call
        Console.WriteLine(countInRange(dp, L1, R1));
    }
}
 
// This code is contributed by lokesh.

Javascript




// Javascript code to implement the approach
 
// dp table initialized with -1
let dp=new Array(20);
for(let i=0; i<20; i++)
{
    dp[i]=new Array(2);
    for(let j=0; j<2; j++)
    {
        dp[i][j]=new Array(180);
        for(let k=0; k<180; k++)
            dp[i][j][k]=new Array(16);
    }
}
 
// recursive Function to find numbers
// in the range L to R such that digit
// sum is divisible by xor sum of digits.
function recur( i,  j,  k,  l,  a)
{
 
    // Base case
    if (i == a.length) {
 
        // Sum of digits is divisible by
        // xor of digits return 1
        if (l != 0 && k % l == 0)
            return 1;
 
        // Otherwise return 0
        else
            return 0;
    }
 
    // If answer for current state is
    // already calculated then just
    // return dp[i][j][k][l]
    if (dp[i][j][k][l] != -1)
        return dp[i][j][k][l];
 
    // Answer initialized with zero
    let ans = 0;
 
    // Tight condition true
    if (j == 1) {
 
        // Iterating from 0 to max value
        // of tight condition
        for (let digit = 0; digit <= parseInt(a[i]);
             digit++) {
 
            // When digit is at max tight
            // condition remains even in
            // next state
            if (digit == parseInt(a[i]))
 
                // Calling recursive function
                // for tight digit
                ans += recur(i + 1, 1, k + digit, l ^ digit,
                             a);
 
            // Tight condition drops
            else
 
                // calling recursive function
                // for digits less than tight
                // condition digit
                ans += recur(i + 1, 0, k + digit, l ^ digit,
                             a);
        }
    }
 
    // Tight condition false
    else {
 
        // iterating for all digits
        for (let digit = 0; digit <= 9; digit++) {
 
            // Calling recursive function
            // for all digits from 0 to 9
            ans += recur(i + 1, 0, k + digit, l ^ digit, a);
        }
    }
 
    // save and return dp value
    return dp[i][j][k][l] = ans;
}
 
// Function to find numbers in the
// range L to R such that digit sum
// is divisible by xor sum of digits.
function countInRange( A,  B)
{
 
    // Initializing dp array with - 1
    for(let i=0; i<20; i++)
    {
        for(let j=0; j<2; j++)
        {
            for(let k=0; k<180; k++)
            {
                for(let l=0; l<16; l++)
                    dp[i][j][k][l]=-1;
            }
        }
    }
 
    A--;
    let L = A.toString(), R = B.toString();
 
    // Numbers with sum of digits divisible
    // by xor sum of digits
    // in the range 0 to L
    let ans1 = recur(0, 1, 0, 0, L);
 
    // Initializing dp array with - 1
    for(let i=0; i<20; i++)
    {
        for(let j=0; j<2; j++)
        {
            for(let k=0; k<180; k++)
            {
                for(let l=0; l<16; l++)
                    dp[i][j][k][l]=-1;
            }
        }
    }
    // Numbers with sum of digits divisible
    // by xor sum of digits
    // in the range 0 to R
    let ans2 = recur(0, 1, 0, 0, R);
 
    // Difference of ans2 and ans1
    // will generate answer for
    // required range
    return ans2 - ans1;
}
 
// Driver Code
// Input 1
let L = 10, R = 15;
 
// Function Call
document.write(countInRange(L, R));
 
// Input 2
let L1 = 1, R1 = 100;
 
// Function Call
document.write(countInRange(L1, R1));

Output

4
67

Time Complexity: O(log(R) * M *  N), where M is the maximum sum of digits and N is the maximum bitwise XOR sum of digits
Auxiliary Space: O(log(R) * M * N)

Related Articles:


My Personal Notes arrow_drop_up
Like Article
Save Article
Related Articles

Start Your Coding Journey Now!