Convert a Binary Search Tree into a Skewed tree in increasing or decreasing order
Given a Binary Search Tree and a binary integer K, the task is to convert Binary search tree into a Skewed Tree in increasing order if K = 0 or in decreasing order if K = 1.
Examples:
Input: K = 0, 5 / \ 3 6 Output: 3 \ 5 \ 6 Input: K = 1, 2 / \ 1 3 Output: 3 \ 2 \ 1
Approach:
- The key observation in the problem is that the first node of the skewed tree will be the extreme left or extreme right node of the BST for increasing order and decreasing order respectively.
- For Increasing Order we need to do the Inorder Traversal, as the inorder traversal of a BST provides us the increasing sequence of the node values. Hence, the order of traversal at every node will be:
- Left node: Recurse to its left node if it exists, to get smaller value.
- Root node: After the complete traversal of its left node/subtree, connect the previous node of the skewed tree to the root node.
- Right node: Recurse to the right node if it exists, for larger values.
- For Decreasing Order, the order of traversal at every node will be:
- Right node: Recurse to its right node if it exists, to get larger values.
- Root node: After the complete traversal of its right node/subtree, connect the previous node of the skewed tree to the root node.
- Left node: Recurse to the left node/subtree for smaller values.
- Similarly, by keeping track of the previous node we can traverse the Binary search tree according to the order needed and form the skewed tree.
Below is the implementation of the above approach:
C++14
// C++ implementation to flatten the // binary search tree into a skewed // tree in increasing / decreasing order #include<bits/stdc++.h> using namespace std; // Class of the node struct Node { int val; Node *left, *right; Node( int x) { val = x; left = right = NULL; } }; Node *prevNode = NULL; Node *headNode = NULL; // Function to flatten the binary // search tree into a skewed tree in // increasing / decreasing order void flattenBTToSkewed(Node *root, int order) { // Base Case if (!root) return ; // Condition to check the order // in which the skewed tree to // maintained if (order) flattenBTToSkewed(root->right, order); else flattenBTToSkewed(root->left, order); Node *rightNode = root->right; Node *leftNode = root->left; // Condition to check if the root Node // of the skewed tree is not defined if (!headNode) { headNode = root; root->left = NULL; prevNode = root; } else { prevNode->right = root; root->left = NULL; prevNode = root; } // Similarly recurse for the left / right // subtree on the basis of the order required if (order) flattenBTToSkewed(leftNode, order); else flattenBTToSkewed(rightNode, order); } // Function to traverse the right // skewed tree using recursion void traverseRightSkewed(Node *root) { if (!root) return ; cout << root->val << " " ; traverseRightSkewed(root->right); } // Driver Code int main() { // 5 // / \ // 3 6 Node *root = new Node(5); root->left = new Node(3); root->right = new Node(6); // Order of the Skewed tree can // be defined as follows - // For Increasing order - 0 // For Decreasing order - 1 int order = 0; flattenBTToSkewed(root, order); traverseRightSkewed(headNode); } // This code is contributed by mohit kumar 29 |
Java
// Java implementation to flatten the // binary search tree into a skewed // tree in increasing / decreasing order import java.io.*; // Class of the node class Node { int val; Node left, right; // Helper function that allocates a new node // with the given data and NULL left and right // pointers. Node( int item) { val = item; left = right = null ; } } class GFG { public static Node node; static Node prevNode = null ; static Node headNode = null ; // Function to flatten the binary // search tree into a skewed tree in // increasing / decreasing order static void flattenBTToSkewed(Node root, int order) { // Base Case if (root == null ) { return ; } // Condition to check the order // in which the skewed tree to // maintained if (order > 0 ) { flattenBTToSkewed(root.right, order); } else { flattenBTToSkewed(root.left, order); } Node rightNode = root.right; Node leftNode = root.left; // Condition to check if the root Node // of the skewed tree is not defined if (headNode == null ) { headNode = root; root.left = null ; prevNode = root; } else { prevNode.right = root; root.left = null ; prevNode = root; } // Similarly recurse for the left / right // subtree on the basis of the order required if (order > 0 ) { flattenBTToSkewed(leftNode, order); } else { flattenBTToSkewed(rightNode, order); } } // Function to traverse the right // skewed tree using recursion static void traverseRightSkewed(Node root) { if (root == null ) { return ; } System.out.print(root.val + " " ); traverseRightSkewed(root.right); } // Driver Code public static void main (String[] args) { // 5 // / \ // 3 6 GFG tree = new GFG(); tree.node = new Node( 5 ); tree.node.left = new Node( 3 ); tree.node.right = new Node( 6 ); // Order of the Skewed tree can // be defined as follows - // For Increasing order - 0 // For Decreasing order - 1 int order = 0 ; flattenBTToSkewed(node, order); traverseRightSkewed(headNode); } } // This code is contributed by avanitrachhadiya2155 |
Python3
# Python3 implementation to flatten # the binary search tree into a skewed # tree in increasing / decreasing order # Class of the node class Node: # Constructor of node def __init__( self , val): self .val = val self .left = None self .right = None prevNode = None headNode = None # Function to flatten # the binary search tree into a skewed # tree in increasing / decreasing order def flattenBTToSkewed(root, order): # Base Case if not root: return # Condition to check the order # in which the skewed tree to maintained if order: flattenBTToSkewed(root.right, order) else : flattenBTToSkewed(root.left, order) global headNode; global prevNode rightNode = root.right leftNode = root.left # Condition to check if the root Node # of the skewed tree is not defined if not headNode: headNode = root root.left = None prevNode = root else : prevNode.right = root root.left = None prevNode = root # Similarly recurse for the left / right # subtree on the basis of the order required if order: flattenBTToSkewed(leftNode, order) else : flattenBTToSkewed(rightNode, order) # Function to traverse the right # skewed tree using recursion def traverseRightSkewed(root): if not root: return print (root.val, end = " " ) traverseRightSkewed(root.right) # Driver Code if __name__ = = "__main__" : # 5 # / \ # 3 6 root = Node( 5 ) root.left = Node( 3 ) root.right = Node( 6 ) prevNode = None headNode = None # Order of the Skewed tree can # be defined as follows - # For Increasing order - 0 # For Decreasing order - 1 order = 0 flattenBTToSkewed(root, order) traverseRightSkewed(headNode) |
C#
// C# implementation to flatten the // binary search tree into a skewed // tree in increasing / decreasing order using System; // Class of the node class Node { public int val; public Node left, right; // Helper function that allocates a new // node with the given data and NULL // left and right pointers. public Node( int item) { val = item; left = right = null ; } } class GFG{ public static Node node; static Node prevNode = null ; static Node headNode = null ; // Function to flatten the binary // search tree into a skewed tree in // increasing / decreasing order static void flattenBTToSkewed(Node root, int order) { // Base Case if (root == null ) { return ; } // Condition to check the order // in which the skewed tree to // maintained if (order > 0) { flattenBTToSkewed(root.right, order); } else { flattenBTToSkewed(root.left, order); } Node rightNode = root.right; Node leftNode = root.left; // Condition to check if the root Node // of the skewed tree is not defined if (headNode == null ) { headNode = root; root.left = null ; prevNode = root; } else { prevNode.right = root; root.left = null ; prevNode = root; } // Similarly recurse for the left / right // subtree on the basis of the order required if (order > 0) { flattenBTToSkewed(leftNode, order); } else { flattenBTToSkewed(rightNode, order); } } // Function to traverse the right // skewed tree using recursion static void traverseRightSkewed(Node root) { if (root == null ) { return ; } Console.Write(root.val + " " ); traverseRightSkewed(root.right); } // Driver Code static public void Main() { // 5 // / \ // 3 6 GFG.node = new Node(5); GFG.node.left = new Node(3); GFG.node.right = new Node(6); // Order of the Skewed tree can // be defined as follows - // For Increasing order - 0 // For Decreasing order - 1 int order = 0; flattenBTToSkewed(node, order); traverseRightSkewed(headNode); } } // This code is contributed by rag2127 |
Javascript
<script> // Javascript implementation to flatten the // binary search tree into a skewed // tree in increasing / decreasing order // Class of the node class Node { // Helper function that allocates a new node // with the given data and NULL left and right // pointers. constructor(item) { this .val = item; this .left = this .right = null ; } } let node; let prevNode = null ; let headNode = null ; // Function to flatten the binary // search tree into a skewed tree in // increasing / decreasing order function flattenBTToSkewed(root,order) { // Base Case if (root == null ) { return ; } // Condition to check the order // in which the skewed tree to // maintained if (order > 0) { flattenBTToSkewed(root.right, order); } else { flattenBTToSkewed(root.left, order); } let rightNode = root.right; let leftNode = root.left; // Condition to check if the root Node // of the skewed tree is not defined if (headNode == null ) { headNode = root; root.left = null ; prevNode = root; } else { prevNode.right = root; root.left = null ; prevNode = root; } // Similarly recurse for the left / right // subtree on the basis of the order required if (order > 0) { flattenBTToSkewed(leftNode, order); } else { flattenBTToSkewed(rightNode, order); } } // Function to traverse the right // skewed tree using recursion function traverseRightSkewed(root) { if (root == null ) { return ; } document.write(root.val + " " ); traverseRightSkewed(root.right); } // Driver Code // 5 // / \ // 3 6 node = new Node(5); node.left = new Node(3); node.right = new Node(6); // Order of the Skewed tree can // be defined as follows - // For Increasing order - 0 // For Decreasing order - 1 let order = 0; flattenBTToSkewed(node, order); traverseRightSkewed(headNode); // This code is contributed by unknown2108 </script> |
Output:
3 5 6
Please Login to comment...