Java code:

The Longest Increasing Subsequence (LIS) problem is to find the length of the longest subsequence of a given sequence such that all elements of the subsequence are sorted in increasing order. For example, the length of LIS for {10, 22, 9, 33, 21, 50, 41, 60, 80} is 6 and LIS is {10, 22, 33, 50, 60, 80}.

## Java

`package` `BIT; ` ` ` `import` `java.util.ArrayList; ` `import` `java.util.Iterator; ` ` ` `public` `class` `LongestIncreasingSubsequence { ` ` ` `public` `static` `void` `main(String[] args) { ` `// int array[] = {10, 22, 9, 33, 21, 50, 41, 60, 80}; ` `// int array[] = {10, 2, 9, 3, 5, 4, 6, 8}; ` ` ` `int` `array[] = {` `10` `, ` `9` `, ` `8` `, ` `6` `, ` `5` `, ` `4` `}; ` ` ` `ArrayList list = ` `new` `ArrayList(); ` ` ` `ArrayList longestList = ` `new` `ArrayList(); ` ` ` `int` `currentMax; ` ` ` `int` `highestCount = ` `0` `; ` ` ` `for` `(` `int` `i = ` `0` `; i < array.length;i++) ` ` ` `{ ` ` ` `currentMax = Integer.MIN_VALUE; ` ` ` `for` `(` `int` `j = i;j < array.length; j++) ` ` ` `{ ` ` ` `if` `(array[j] > currentMax) ` ` ` `{ ` ` ` `list.add(array[j]); ` ` ` `currentMax = array[j]; ` ` ` `} ` ` ` `} ` ` ` ` ` `//Compare previous highest subsequence ` ` ` `if` `(highestCount < list.size()) ` ` ` `{ ` ` ` `highestCount = list.size(); ` ` ` `longestList = ` `new` `ArrayList(list); ` ` ` `} ` ` ` `list.clear(); ` ` ` `} ` ` ` `System.out.println(); ` ` ` ` ` `//Print list ` ` ` `Iterator itr = longestList.iterator(); ` ` ` `System.out.println(` `"The Longest subsequence"` `); ` ` ` `while` `(itr.hasNext()) ` ` ` `{ ` ` ` `System.out.print(itr.next() + ` `" "` `); ` ` ` `} ` ` ` `System.out.println(); ` ` ` `System.out.println(` `"Length of LIS: "` `+ highestCount); ` ` ` `} ` ` ` `} ` |

*chevron_right*

*filter_none*

## C#

`using` `System; ` `using` `System.Collections.Generic; ` ` ` `class` `longestIncreasingSubsequence ` `{ ` ` ` `public` `static` `void` `Main(String[] args) ` ` ` `{ ` ` ` `int` `[]array = {10, 22, 9, 33, 21, 50, 41, 60, 80}; ` ` ` `// int []array = {10, 2, 9, 3, 5, 4, 6, 8}; ` ` ` `//int []array = {10, 9, 8, 6, 5, 4}; ` ` ` `List<` `int` `> list = ` `new` `List<` `int` `>(); ` ` ` `List<` `int` `> longestList = ` `new` `List<` `int` `>(); ` ` ` `int` `currentMax; ` ` ` `int` `highestCount = 0; ` ` ` `for` `(` `int` `i = 0; i < array.Length;i++) ` ` ` `{ ` ` ` `currentMax = ` `int` `.MinValue; ` ` ` `for` `(` `int` `j = i;j < array.Length; j++) ` ` ` `{ ` ` ` `if` `(array[j] > currentMax) ` ` ` `{ ` ` ` `list.Add(array[j]); ` ` ` `currentMax = array[j]; ` ` ` `} ` ` ` `} ` ` ` ` ` `// Compare previous highest subsequence ` ` ` `if` `(highestCount < list.Count) ` ` ` `{ ` ` ` `highestCount = list.Count; ` ` ` `longestList = ` `new` `List<` `int` `>(list); ` ` ` `} ` ` ` `list.Clear(); ` ` ` `} ` ` ` `Console.WriteLine(); ` ` ` ` ` `// Print list ` ` ` `Console.WriteLine(` `"The longest subsequence"` `); ` ` ` `foreach` `(` `int` `itr ` `in` `longestList) ` ` ` `{ ` ` ` `Console.Write(itr + ` `" "` `); ` ` ` `} ` ` ` `Console.WriteLine(); ` ` ` `Console.WriteLine(` `"Length of LIS: "` `+ highestCount); ` ` ` `} ` `} ` ` ` `// This code is contributed by 29AjayKumar ` |

*chevron_right*

*filter_none*

The longest Increasing Subsequence (LIS) problem is to find the length of the longest subsequence of a given sequence such that all elements of the subsequence are sorted in increasing order.

Examples:

Input:[10, 22, 9, 33, 21, 50, 41, 60, 80]Output:[10, 22, 33, 50, 60, 80] OR [10 22 33 41 60 80] or any other LIS of same length.

In previous post, we have discussed about Longest Increasing Subsequence problem. However, the post only covered code related to querying size of LIS, but not the construction of LIS. In this post, we will discuss how to print LIS using similar DP solution discussed earlier.

Let arr[0..n-1] be the input array. We define vector L such that L[i] is itself is a vector that stores LIS of arr that ends with arr[i]. For example, for array [3, 2, 6, 4, 5, 1],

L[0]: 3 L[1]: 2 L[2]: 2 6 L[3]: 2 4 L[4]: 2 4 5 L[5]: 1

Therefore for an index i, L[i] can be recursively written as –

L[0] = {arr[O]} L[i] = {Max(L[j])} + arr[i] where j < i and arr[j] < arr[i] and if there is no such j then L[i] = arr[i]

Below is the implementation of above idea –

## C++

`/* Dynamic Programming solution to construct Longest ` ` ` `Increasing Subsequence */` `#include <iostream> ` `#include <vector> ` `using` `namespace` `std; ` ` ` `// Utility function to print LIS ` `void` `printLIS(vector<` `int` `>& arr) ` `{ ` ` ` `for` `(` `int` `x : arr) ` ` ` `cout << x << ` `" "` `; ` ` ` `cout << endl; ` `} ` ` ` `// Function to construct and print Longest Increasing ` `// Subsequence ` `void` `constructPrintLIS(` `int` `arr[], ` `int` `n) ` `{ ` ` ` `// L[i] - The longest increasing sub-sequence ` ` ` `// ends with arr[i] ` ` ` `vector<vector<` `int` `> > L(n); ` ` ` ` ` `// L[0] is equal to arr[0] ` ` ` `L[0].push_back(arr[0]); ` ` ` ` ` `// start from index 1 ` ` ` `for` `(` `int` `i = 1; i < n; i++) ` ` ` `{ ` ` ` `// do for every j less than i ` ` ` `for` `(` `int` `j = 0; j < i; j++) ` ` ` `{ ` ` ` `/* L[i] = {Max(L[j])} + arr[i] ` ` ` `where j < i and arr[j] < arr[i] */` ` ` `if` `((arr[i] > arr[j]) && ` ` ` `(L[i].size() < L[j].size() + 1)) ` ` ` `L[i] = L[j]; ` ` ` `} ` ` ` ` ` `// L[i] ends with arr[i] ` ` ` `L[i].push_back(arr[i]); ` ` ` `} ` ` ` ` ` `// L[i] now stores increasing sub-sequence of ` ` ` `// arr[0..i] that ends with arr[i] ` ` ` `vector<` `int` `> max = L[0]; ` ` ` ` ` `// LIS will be max of all increasing sub- ` ` ` `// sequences of arr ` ` ` `for` `(vector<` `int` `> x : L) ` ` ` `if` `(x.size() > max.size()) ` ` ` `max = x; ` ` ` ` ` `// max will contain LIS ` ` ` `printLIS(max); ` `} ` ` ` `// Driver function ` `int` `main() ` `{ ` ` ` `int` `arr[] = { 3, 2, 6, 4, 5, 1 }; ` ` ` `int` `n = ` `sizeof` `(arr) / ` `sizeof` `(arr[0]); ` ` ` ` ` `// construct and print LIS of arr ` ` ` `constructPrintLIS(arr, n); ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Python3

`# Dynamic Programming solution to construct Longest ` `# Increasing Subsequence ` ` ` `# Utility function to print LIS ` `def` `printLIS(arr: ` `list` `): ` ` ` `for` `x ` `in` `arr: ` ` ` `print` `(x, end` `=` `" "` `) ` ` ` `print` `() ` ` ` `# Function to construct and print Longest Increasing ` `# Subsequence ` `def` `constructPrintLIS(arr: ` `list` `, n: ` `int` `): ` ` ` ` ` `# L[i] - The longest increasing sub-sequence ` ` ` `# ends with arr[i] ` ` ` `l ` `=` `[[] ` `for` `i ` `in` `range` `(n)] ` ` ` ` ` `# L[0] is equal to arr[0] ` ` ` `l[` `0` `].append(arr[` `0` `]) ` ` ` ` ` `# start from index 1 ` ` ` `for` `i ` `in` `range` `(` `1` `, n): ` ` ` ` ` `# do for every j less than i ` ` ` `for` `j ` `in` `range` `(i): ` ` ` ` ` `# L[i] = {Max(L[j])} + arr[i] ` ` ` `# where j < i and arr[j] < arr[i] ` ` ` `if` `arr[i] > arr[j] ` `and` `(` `len` `(l[i]) < ` `len` `(l[j]) ` `+` `1` `): ` ` ` `l[i] ` `=` `l[j].copy() ` ` ` ` ` `# L[i] ends with arr[i] ` ` ` `l[i].append(arr[i]) ` ` ` ` ` `# L[i] now stores increasing sub-sequence of ` ` ` `# arr[0..i] that ends with arr[i] ` ` ` `maxx ` `=` `l[` `0` `] ` ` ` ` ` `# LIS will be max of all increasing sub- ` ` ` `# sequences of arr ` ` ` `for` `x ` `in` `l: ` ` ` `if` `len` `(x) > ` `len` `(maxx): ` ` ` `maxx ` `=` `x ` ` ` ` ` `# max will contain LIS ` ` ` `printLIS(maxx) ` ` ` `# Driver Code ` `if` `__name__ ` `=` `=` `"__main__"` `: ` ` ` ` ` `arr ` `=` `[` `3` `, ` `2` `, ` `6` `, ` `4` `, ` `5` `, ` `1` `] ` ` ` `n ` `=` `len` `(arr) ` ` ` ` ` `# construct and print LIS of arr ` ` ` `constructPrintLIS(arr, n) ` ` ` `# This code is contributed by ` `# sanjeev2552 ` |

*chevron_right*

*filter_none*

Output:

2 4 5

Note that the time complexity of the above Dynamic Programming (DP) solution is O(n^2) and there is a O(n Log n) non-DP solution for the LIS problem. See below post for O(n Log n) solution.

Construction of Longest Monotonically Increasing Subsequence (N log N)

This article is contributed by **Aditya Goel**. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.

## Recommended Posts:

- Longest Common Increasing Subsequence (LCS + LIS)
- Printing Longest Common Subsequence | Set 2 (Printing All)
- Construction of Longest Increasing Subsequence (N log N)
- Printing longest Increasing consecutive subsequence
- Find longest bitonic sequence such that increasing and decreasing parts are from two different arrays
- Variations of LIS | DP-21
- Weighted Job Scheduling | Set 2 (Using LIS)
- Size of array after repeated deletion of LIS
- LIS using Segment Tree
- Minimum concatenation required to get strictly LIS for array with repetitive elements | Set-2
- Longest increasing sub-sequence formed by concatenating array to itself N times
- Longest increasing sequence by the boundary elements of an Array
- Printing Maximum Sum Increasing Subsequence
- Longest Increasing Subsequence using Longest Common Subsequence Algorithm
- Printing Longest Common Subsequence
- Printing Longest Bitonic Subsequence
- Count the number of contiguous increasing and decreasing subsequences in a sequence
- Number of ways to divide string in sub-strings such to make them in lexicographically increasing sequence
- Longest Increasing Subsequence Size (N log N)
- Longest Increasing Subsequence | DP-3