# Compute the determinant of a given square array using NumPy in Python

In Python, the determinant of a square array can be easily calculated using the NumPy package. This package is used to perform mathematical calculations on single and multi-dimensional arrays. numpy.linalg is an important module of NumPy package which is used for linear algebra.

We can use det() function of numpy.linalg module to find out the determinant of a square array.

Syntax: numpy.linalg.det(array)

Parameters:

array(â€¦, M, M) array_like: Input array to calculate determinants for.

Returns:

det(â€¦) array_like: Determinant of array.

Example 1: Determinant of 2X2 matrix.

## Python3

 `# Importing libraries ``import` `numpy as np ``from` `numpy ``import` `linalg `` ` `# Creating a 2X2 matrix ``matrix ``=` `np.array([[``1``, ``0``], [``3``, ``6``]]) ``print``(``"Original 2-D matrix"``) ``print``(matrix) `` ` `# Output ``print``(``"Determinant of the 2-D matrix:"``) ``print``(np.linalg.det(matrix))`

Output:

```Original 2-D matrix
[[1 0]
[3 6]]
Determinant of the 2-D matrix:
6.0
```

Example 2: Determinant of 3X3 matrix

## Python3

 `# Importing libraries ``import` `numpy as np ``from` `numpy ``import` `linalg `` ` `# Creating a 3X3 matrix ``matrix ``=` `np.array([[``1``, ``0``, ``1``], [``1``, ``2``, ``0``], [``4``, ``6``, ``2``]]) ``print``(``"Original 3-D matrix"``) ``print``(matrix) `` ` `# Output ``print``(``"Determinant of the 3-D matrix:"``) ``print``(np.linalg.det(matrix))`

Output:

```Original 3-D matrix
[[1 0 1]
[1 2 0]
[4 6 2]]
Determinant of the 3-D matrix:
2.0
```

Example 3: Determinant of 4X4 matrix

## Python3

 `# Importing libraries ``import` `numpy as np ``from` `numpy ``import` `linalg `` ` `# Creating a 4X4 matrix ``matrix ``=` `np.array([[``1``, ``0``, ``1``, ``8``], [``1``, ``2``, ``0``, ``3``], [``4``, ``6``, ``2``, ``6``], [``0``, ``3``, ``6``, ``4``]]) ``print``(``"Original 4-D matrix"``) ``print``(matrix) `` ` `# Output ``print``(``"Determinant of the 4-D matrix:"``) ``print``(np.linalg.det(matrix)) `

Output:

```Original 4-D matrix
[[1 0 1 8]
[1 2 0 3]
[4 6 2 6]
[0 3 6 4]]
Determinant of the 4-D matrix:
188.0
```

Previous
Next