Open In App

# Compute pearson product-moment correlation coefficients of two given NumPy arrays

In NumPy, We can compute pearson product-moment correlation coefficients of two given arrays with the help of numpy.corrcoef() function.

In this function, we will pass arrays as a parameter and it will return the pearson product-moment correlation coefficients of two given arrays.

Syntax: numpy.corrcoef(x, y=None, rowvar=True, bias=, ddof=)
Return: Pearson product-moment correlation coefficients

Let’s see an example:

Example 1:

## Python

 `# import library``import` `numpy as np`` ` `# create numpy 1d-array``array1 ``=` `np.array([``0``, ``1``, ``2``])``array2 ``=` `np.array([``3``, ``4``, ``5``])`` ` `# pearson product-moment correlation``# coefficients of the arrays``rslt ``=` `np.corrcoef(array1, array2)`` ` `print``(rslt)`

Output

```[[1. 1.]
[1. 1.]]
```

Example 2:

## Python

 `# import numpy library``import` `numpy as np`` ` `# create a numpy 1d-array``array1 ``=` `np.array([ ``2``, ``4``, ``8``])``array2 ``=` `np.array([ ``3``, ``2``,``1``])`` ` ` ` `# pearson product-moment correlation``# coefficients of the arrays``rslt2 ``=` `np.corrcoef(array1, array2)`` ` `print``(rslt2)`

Output

```[[ 1.         -0.98198051]
[-0.98198051  1.        ]]
```