cauchy_distribution a() in C++ with Examples

The cauchy_distribution::a() function is an inbuilt function in C++ STL which is used to returns the distribution parameter associated with Cauchy distribution. The class cauchy_distribution is present in header file random. Before going to the syntax of the function, brief introduction to Cauchy Distribution.

Cauchy Distribution A random variable X is said to follow Cauchy Distribution with parameter a and b if it has the probability density function of the form,

Where a is the location parameter specifying the location of peak of the distribution and b is the scale parameter specifying the half-width at half-maximum. Mean and Variance of the distribution is not defined, but its median and mode both exists and equals to a.

Syntax:

cauchy_distribution_name.a()

Parameters: This function does not accepts any parameter.

Return Value: The function returns the distribution parameter associated with the distribution. This parameter is known as the peak location parameter of the Cauchy distribution, which determines the shift to either side of the distribution shape. The parameter is set on construction.

Below programs illustrates the cauchy_distribution::a() function in C++ STL:

Program 1:

 // CPP program to illustrate  // cauchy_distribution::a()  #include  #include  using namespace std;     // Driver program  int main()  {      default_random_engine generator;      cauchy_distribution<double> d(0.78, 1.45);         // prints the first value      cout << "Cauchy distribution: " << d.a();         return 0;  }

Output:

Cauchy distribution: 0.78


Program 2:

 // CPP program to illustrate  // cauchy_distribution::a()  #include  #include  using namespace std;     // Driver program  int main()  {      default_random_engine generator;         // Define a cauchy distribution with default       // parameters a=0.0 and b=1.0      cauchy_distribution<double> d;         // prints the first value      cout << "Cauchy distribution: " << d.a();         return 0;  }

Output:

Cauchy distribution: 0


Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.