Open In App

C Program for Iterative Merge Sort

Last Updated : 14 Dec, 2022
Improve
Improve
Like Article
Like
Save
Share
Report

Following is a typical recursive implementation of Merge Sort that uses last element as pivot. 

C




/* Recursive C program for merge sort */
#include <stdio.h> 
#include <stdlib.h> 
  
/* Function to merge the two haves arr[l..m] and arr[m+1..r] of array arr[] */
void merge(int arr[], int l, int m, int r); 
  
/* l is for left index and r is right index of the sub-array 
of arr to be sorted */
void mergeSort(int arr[], int l, int r) 
 if (l < r) { 
  int m = l + (r - l) / 2; // Same as (l+r)/2 but avoids overflow for large l & h 
  mergeSort(arr, l, m); 
  mergeSort(arr, m + 1, r); 
  merge(arr, l, m, r); 
 
  
/* Function to merge the two haves arr[l..m] and arr[m+1..r] of array arr[] */
void merge(int arr[], int l, int m, int r) 
 int i, j, k; 
 int n1 = m - l + 1; 
 int n2 = r - m; 
  
 /* create temp arrays */
 int L[n1], R[n2]; 
  
 /* Copy data to temp arrays L[] and R[] */
 for (i = 0; i < n1; i++) 
  L[i] = arr[l + i]; 
 for (j = 0; j < n2; j++) 
  R[j] = arr[m + 1 + j]; 
  
 /* Merge the temp arrays back into arr[l..r]*/
 i = 0; 
 j = 0; 
 k = l; 
 while (i < n1 && j < n2) { 
  if (L[i] <= R[j]) { 
   arr[k] = L[i]; 
   i++; 
  
  else
   arr[k] = R[j]; 
   j++; 
  
  k++; 
 
  
 /* Copy the remaining elements of L[], if there are any */
 while (i < n1) { 
  arr[k] = L[i]; 
  i++; 
  k++; 
 
  
 /* Copy the remaining elements of R[], if there are any */
 while (j < n2) { 
  arr[k] = R[j]; 
  j++; 
  k++; 
 
  
/* Function to print an array */
void printArray(int A[], int size) 
 int i; 
 for (i = 0; i < size; i++) 
  printf("%d ", A[i]); 
 printf("\n"); 
  
/* Driver program to test above functions */
int main() 
 int arr[] = { 12, 11, 13, 5, 6, 7 }; 
 int arr_size = sizeof(arr) / sizeof(arr[0]); 
  
 printf("Given array is \n"); 
 printArray(arr, arr_size); 
  
 mergeSort(arr, 0, arr_size - 1); 
  
 printf("\nSorted array is \n"); 
 printArray(arr, arr_size); 
 return 0; 


Output:

Given array is 
12 11 13 5 6 7 

Sorted array is 
5 6 7 11 12 13

Time Complexity: O(n*log(n))
Auxiliary Space: O(n)

Please refer complete article on Iterative Merge Sort for more details!



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads