Open In App
Related Articles

C Program for Iterative Merge Sort

Improve Article
Improve
Save Article
Save
Like Article
Like

Following is a typical recursive implementation of Merge Sort that uses last element as pivot. 

C




/* Recursive C program for merge sort */
#include <stdio.h> 
#include <stdlib.h> 
  
/* Function to merge the two haves arr[l..m] and arr[m+1..r] of array arr[] */
void merge(int arr[], int l, int m, int r); 
  
/* l is for left index and r is right index of the sub-array 
of arr to be sorted */
void mergeSort(int arr[], int l, int r) 
 if (l < r) { 
  int m = l + (r - l) / 2; // Same as (l+r)/2 but avoids overflow for large l & h 
  mergeSort(arr, l, m); 
  mergeSort(arr, m + 1, r); 
  merge(arr, l, m, r); 
 
  
/* Function to merge the two haves arr[l..m] and arr[m+1..r] of array arr[] */
void merge(int arr[], int l, int m, int r) 
 int i, j, k; 
 int n1 = m - l + 1; 
 int n2 = r - m; 
  
 /* create temp arrays */
 int L[n1], R[n2]; 
  
 /* Copy data to temp arrays L[] and R[] */
 for (i = 0; i < n1; i++) 
  L[i] = arr[l + i]; 
 for (j = 0; j < n2; j++) 
  R[j] = arr[m + 1 + j]; 
  
 /* Merge the temp arrays back into arr[l..r]*/
 i = 0; 
 j = 0; 
 k = l; 
 while (i < n1 && j < n2) { 
  if (L[i] <= R[j]) { 
   arr[k] = L[i]; 
   i++; 
  
  else
   arr[k] = R[j]; 
   j++; 
  
  k++; 
 
  
 /* Copy the remaining elements of L[], if there are any */
 while (i < n1) { 
  arr[k] = L[i]; 
  i++; 
  k++; 
 
  
 /* Copy the remaining elements of R[], if there are any */
 while (j < n2) { 
  arr[k] = R[j]; 
  j++; 
  k++; 
 
  
/* Function to print an array */
void printArray(int A[], int size) 
 int i; 
 for (i = 0; i < size; i++) 
  printf("%d ", A[i]); 
 printf("\n"); 
  
/* Driver program to test above functions */
int main() 
 int arr[] = { 12, 11, 13, 5, 6, 7 }; 
 int arr_size = sizeof(arr) / sizeof(arr[0]); 
  
 printf("Given array is \n"); 
 printArray(arr, arr_size); 
  
 mergeSort(arr, 0, arr_size - 1); 
  
 printf("\nSorted array is \n"); 
 printArray(arr, arr_size); 
 return 0; 


Output:

Given array is 
12 11 13 5 6 7 

Sorted array is 
5 6 7 11 12 13

Time Complexity: O(n*log(n))
Auxiliary Space: O(n)

Please refer complete article on Iterative Merge Sort for more details!


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 14 Dec, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials